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The objective of this write-up is to illustrate how data visualization techniques could be utilized
to unveil insights from a data set. It is important to point out that this document reflects the
personal preferences of the author only. This write-up is by no means suggesting that the
following method is the best.

Figure 1 shows a typical 2X2 factorial design with one between-subject factor (gender) and one
within-subject factor (two measures: Test 1 and Test 2). It is assumed that a treatment is
implemented between the two tests. If the analyst wants to focus on the gender effect, she
could employ “General Linear Model” in SPSS by assigning the posttest score to the dependent
variable, treating gender as the fixed factor, and making the pretest score a covariate. A
covariate is a variable that reflects the pre-existing difference of the subjects. The pretest is
used in this modeling to take the prior knowledge possessed by the participants into account
when the gender difference in terms of academic performance is inquired.
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Figure 1. Pretest as a covariate in GML of SPSS.

Figure 2 shows the result of the GLM with a covariate. The p value (sig.) is .367, indicating a
non-significant gender effect. This report is acceptable, but if the analyst stops right here,
something important might be overlooked.
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Tests of Between-Subjects Effects

Dependent Variable: test2

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 1434.581° 2 717.291 4.915 .028
Intercept 1055.600 1 1055.600 7.234 .020
testt 1293.705 1 1293.705 8.865 \,01 2
gender 128.407 1 128.407 .880 .367
Error 1751.152 12 145929
Total 108690.000 15
Corrected Total 3185.733 14

a. R Squared = 450 (Adjusted R Squared = .359)

Figure 2. GLM output with pretest as a covariate.

The analyst could switch the emphasis from the between-subject factor to the within-subject
factor by conducting a dependent t-test in JMP. The right panel of Figure 3 shows that when
both genders are included as a single group, the mean difference between Test 1 and Test 2 is
not statistically significant (p = .1743).
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Figure 3. Dependent t-test using all data.
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Interestingly enough, when the data set is
partitioned by gender (F, M), a different story
emerges. The paired t-test using female
observations yields a significant result (p = .0327)
whereas the t-test using male participants
reaches the opposite conclusion (p =.7030) (see
Figure 4). In other words, the treatment effect as
measured by the change of test performance
over time is definitely moderated by gender.

It is crucial to mention that in this example
gender should be conceptualized as a moderator,
not a mediator. Usually a mediator is a variable
on the causal pathway. For example, if A affects
B and B affects C, then B is considered a
mediator between A and C. On the contrary, a
moderator is not a causal variable. When the
relationship between A and C is not consistent
across all the levels of B, this moderating effect
does not necessarily imply that B causes C. Put it
bluntly, we could not declare that gender (or
race) is a “cause” of academic performance.
Rather, psychologists would examine the
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Figure 4. Dependent t-tests by gender.
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Figure 5. Parallel plot showing female subjects.

Although the preceding analysis by group has revealed some insight, the analyst could further
drill down into the individual level. The middle panel of Figure 5 is a bar chart created from the

pull down menu “Analyze-> Distribution” whereas the right panel is generated from

“Graph—>Parallel Plot.” The parallel plot is a simple line plot connecting the “dots” in Test 1 and

Test 2. When the researcher clicks on the bin representing female, the corresponding

observations on the parallel plot are highlighted. Obviously, four of them (the bottom four)
achieved substantive gains in test performance after the treatment, but three of them (the top

three) had minimal gains only. A plausible explanation is that the top three students already

know a lot about the subject matter and thus the treatment could not add much to their

existing knowledge base. This phenomenon is known as the ceiling effect.
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Figure 6. Parallel plot showing male subjects.

The same data visualization approach is applied to the male subjects (Figure 6). Unlike their
female counterparts, the test results of the boys are very diverse. Specifically, four male

students got worse after the treatment while three of them improved their performance in Test

2. It is noteworthy that those who scored low in Test 2 were the top-performing students in

Test 1. Conversely, those who made progress in Test 2 did not do well in Test 1. Thisis a

puzzling phenomenon that awaits further investigation. For example, the steep slope on the

parallel plot is very eye-catching and by clicking on the line the researcher found that this
student is Peter (Figure 7). To go beyond this data set, she might talk to Peter to find out why
he is benefited so much from the treatment program.
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Figure 7. Parallel plot highlighting one student.
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Figure 8. Scatterplots of pretest and posttest by gender.

Alternately, the analyst could also scrutinize the data using “Graph—>Graph Builder.” Initially, a
regular scatterplot is made by putting Test 2 on the Y-axis and Test 1 on the X-axis. Next, gender
is dragged to the right to divide the scatterplot into two panels. It is clear that the top panel
(female) shows a linear fit while the bottom one (male) depicts a non-linear fit. In other words,
the change of performance over time is consistent among girls, but this varies from student to
student in the male group.

As mentioned at the beginning, there is no single best approach to data analysis. Nonetheless,
this author strongly recommends interactive data visualization, because sometimes statistics
alone could not unearth the hidden patterns of the data.
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