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Abstract 

This paper is a brief overview and evaluation of current mathematical/statistical causal models, 

including the structural equation model (SEM), TETRAD, and the graphical model. The efficacy of 

these approaches will be discussed in the philosophical context of the Duhem-Quine thesis, realism, 

simplicity, identifiability (testability), empirical adequacy, and probabilistic causality. The emphasis of 

this paper is on the philosophical aspect, not the mathematical or computational aspect of SEM, 

nonetheless, readers are not required to have a philosophical background to follow the arguments.  
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A philosophical investigation of causal interpretation in structural models 

Chong Ho Yu 

 

This paper is a brief overview and evaluation of current mathematical/statistical causal models, 

including the structural equation model (SEM), TETRAD, and the graphical model. The efficacy of 

these approaches will be discussed in the philosophical context of the Duhem-Quine thesis, realism, 

simplicity, identifiability (testability), empirical adequacy (it means fitness, but it has nothing to do 

with gymnastics), and probabilistic causality. It is argued that latent factors, which are the building 

blocks of causal models, could be legitimately interpreted as real entities and thus should be treated as 

seriously as observed items. Another component of the above causal models is the path model, which 

is a linear approximation. The path model is criticized as an over-simplification of the empirical world, 

which is said to be non-linear in nature. However, computational tractability, simplicity, and fitness 

together provide a strong justification for causal models. Although the untested assumptions in these 

causal models are challenged by critics, these models are good tools for causal analysis based upon 

partial knowledge. Given the consideration of realness, simplicity, and fitness, and the validity of 

probabilistic causation, both SEM and the graphical model are adequate to answer the Duhem-Quine 

question. 

Weaknesses of theorization and experimentation 

In everyday life, both scholars and non-scholars try to “theorize” things that happen around 

themselves. However, based upon empirical studies, psychologist Baron (2000) found that this 

theorization of causality is often flawed due to selection bias, prior belief, and the interaction of both. 

To be specific, people tend to pay attention to facts that confirm their prior belief regarding a 

particular issue.  

Hoyle (1995) also asserted that use of theory is the most problematic approach to identify causal 

relationships, for usually there are competing theories that seem to be equally adequate in casual 

explanation. Hoyle considered research design the most powerful mean for generating casual 
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inferences, because a good research design could rule out rival hypotheses. This notion has been 

widely adopted by social scientists and statisticians. Classical books on experimental design (e.g. 

Campbell & Stanley, 1963, Cook & Campbell, 1979, Kerlinger, 1986) emphasized that in 

experimental settings researchers could exercise a high degree of control and manipulation of various 

factors. If threats against internal validity and external validity are controlled, and error variances are 

suppressed, then it is possible to rule out rival explanations. It is generally agreed that in experimental 

settings strong causal inferences could be made, whereas in quasi-experiments causal inferences are 

weaker but still possible. However, in non-experiments correlation or association should be reported 

as descriptive findings only.  

Although experimental design could remediate some flaws of theorization, it is by no mean 

bulletproof. French physicist and philosopher Duhem (1954) said that usually a complex array of 

variables, hypotheses, and auxiliary assumptions may be involved in a study. Even if a complex set of 

theories is rejected, the theory remains inconclusive. For associationists such as Karl Pearson, this is a 

typical argument that relationships may be spurious and thus causal inferences cannot be affirmed. 

Following the thread of the Duhem’s notion, Quine (1976) went even further to say that if some ad 

hoc assumptions are altered or added, any disputed theories could be accepted. The combination of 

Duhem’s and Quine’s notions was termed as the “Duhem-Quine thesis.” This thesis accurately points 

out some potential problems of experimentation. Even though the experimenter could take as many 

variables into account as possible, reduce as many error variances as possible, and maximize the 

experimental error, the interaction of all variables and remaining noise together could still make the 

research question unsettled. Further, many issues are not subject to experimental manipulation. For 

example, it is unethical for the experimenter to assign a sample to a smoking group and another to a 

non-smoking group to study whether cancer and smoking is causally related. Consequently, the notion 

of the experimental school confines some issues into the domain of association only (non-causality).  

In recent years, mathematical approaches were proposed as tools to strengthen causal inferences. 

The structural equation model, as well as TETRAD and the graphical model, which are extensions of 
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SEM, are noticeable “causationist” schools. In the following sections, the characteristics of these 

schools of thought will be introduced and the philosophical issues related to these schools will be 

discussed.  

Structural equation modeling 

Structural equation model has gained popularity among social scientists since 1970s. According 

to Pearl (2000), the causal elements of SEM are not paid much attention by researchers. Economists 

view structural models as convenient representations of density functions, and social scientists see 

them as summaries of covariance matrices. For over a decade, both Pearl (2000, in press) and 

Glymour & Cooper (1999) have devoted much effort to reinstate the causal interpretation of SEM. 

In conventional experiments that involve many variables and relationships, researchers may 

perform several separate ANOVA and regression analyses. SEM is a different approach, in which 

variables are organized in a structural fashion. SEM is a synthesis of the latent factor model and the 

structural model, which will be introduced next. 

Factor model 

The latent factor model is also known as the latent construct model, the latent variable model, or 

the measurement model. The term “latent variable model” may be misleading since “variables” are 

usually referred to as observed items while “factors” and “constructs” are referred to as theoretical 

entities. Thus, throughout this paper the term “latent factor ” or “latent construct” is used instead.  

A measurement model, as its name implies, is about measurement and data collection. A factor 

model identifies the relationship between observed items and latent factors. For example, when a 

psychologist wants to study the causal relationships between anxiety and job performance, first he/she 

has to define the constructs “anxiety” and “job performance.” To accomplish this step, the 

psychologist employs Cronbach Alpha to evaluate the internal consistency of observed items (Yu, 

2000), and also applies factor analysis to extract latent constructs from these consistent observed 

variables. If the factor structure indicates that observed items cluster around one eigenvector, which is 

the graphical representation of factors in subject space, the construct is said to be uni-dimensional.  
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The relationship between factors and observed variables are indicated in Figure 1. The ellipse 

represents a latent construct, and the rectangles represent observed variables, which are individual 

items in a scale. The circles denote measurement errors.  

 

Figure 1. Factor model 

 

 

It is important to note that every measurement includes some degree of measurement error. The 

purpose of Cronbach Alpha is to estimate the test score reliability (r) in terms of the measurement 

error (e). In other words, reliability and the measurement error is in a “see-saw” relationship ( r = 1 – 

e). Moreover, factor analysis is a form of triangulation in attempt to minimize the measurement error. 

For example, if an instructor gives only one question in a test and judges whether the student is 

competent based on a single item response, even someone who does not have any statistical training 

could tell that this assessment is unfair. By giving more items in a test, the measurement errors would 

cancel out each other and thus the test score would become more reliable.  

The relationship between factors and observed items are defined by factor loadings, which are 

computed based on item correlation or covariance matrices. The sum of squares of factor loading can 

be converted into eigenvectors in subject space. In subject space, the length of vectors indicates the 

value of factor loadings, and the angle between vectors indic ates inter -factor relationship (see Figure 

2).   
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Figure 2. Vectors in subject space 

 

 

Factors are the building blocks of SEM. Before proceeding to the path model, we have to 

examine why using latent factors is justified. There are two major claims involved in using the factor 

model. First, latent factors should be interpreted as real entities. Second, constructs and observed 

items are causally related.  

Realism. Realism and anti-realism has been an endless debate among philosophers. Why is it 

important in the context of causality? It is because in order to establish the causal and effect 

relationship of entities, those entities must be perceived as real as observed variables. In an episode of 

“Star Trek,” it is amusing to see how the photon fluctuation in a warp engine “causes” the starship to 

explode. However, the so-called cause and effect in science fiction is just a 3D animation effect 

generated by computers. There is no photon fluctuation. Neither the warp engine nor the starship is 

real. Thus, it is not amusing to see an engineer seriously talking about the causal relationship between 

photon fluctuation and warp engine. He needs psychotherapy! By the same token, if a psychologist 

talks about how depression causes poor job performance but he/she treats the constructs “depression” 

and “performance” as fictitious, his misuse of language is just like talking about how photon 

instability causes malfunctioning of a warp engine. If “depression” and “performance” are not treated 

as real entities, then at most the psychologist could issue a statement like “the factor called X that 
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summaries A to D behaviors and the one called Y that summaries E to F behaviors has a negative 

correlation.” If correlation alone is adequate for theorizing, researchers could arbitrarily name factors 

as X, Y, Z, A, B, C, rather than assigning names that are conceptually sensible and isomorphic to the 

empirical world (e.g. anxiety, depression, obsession, performance). When sensible names are assigned 

to factors, the hidden assumption is that there exists some degree of mapping between the theoretical 

and empirical worlds. 

Borsboom, Mellenbergh, & van Heerden (in press) also hold a realist position regarding latent 

factors. They compared and contrasted the operationalist and realist positions, and argued that the 

latter is more acceptable than the former. Operationalism is a form of anti-realism which maintains a 

sharp distinction between theory and observations, and theoretical constructs are nothing more than 

instruments for the sake of operational convenience only. Although operationalists view the latent 

construct as nothing more than a numeric trick to simplify the observations (collapsing many 

observed items into one factor), Borsboom et al assert that operationalism and the latent construct 

theory are fundamentally incompatible. If a latent construct is just for operational convenience, then 

there should be a distinct latent factor for every single test researchers construct. Upon the 

operationalist view, it is even impossible to formulate the requirement of uni-dimensionality. As a 

result, operationalists would have difficulties making sense of item response theory, which is a special 

case of factor analysis and assumes one single trait in the measurement. Borsboom et al argued that 

realism is typically associated with causality. If latent factors are real rather than operational, then 

latent factors are causally responsible for observed items. 

The above argument seems to be unconvincing and open to counterattack. Empirically speaking, 

very often constructs do not demonstrate uni-dimensionality even though the theory said so. 

Reliability in terms of internal consistency, which is often measured by Cronbach Alpha, is a 

necessary but not sufficient condition for uni-dimensionality. However, meta-analyses of reliability 

across studies, also known as reliability generalization studies, indicated that reliability information 

could fluctuate from sample to sample (Vacha-Hasse, 1998). No wonder Thompson and Vacha-Haase 
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(2000) went even further to proclaim that “psychometrics is datametrics” (p.174). In other words, 

reliability attaches to the data rather than the psychological test. Moreover, Kelley (1940) also warned 

that constructs resulting from factor analysis are not timeless, spaceless, populationless truth.  

At first glance, factors had better been interpreted in the context of operationalism. However, 

fluctuation in the measurement model does not necessarily deny the realness of constructs. In physical 

sciences, the measurement of tangible things also leads to inconsistent results. As indicated in Figure 

1, the factor model takes measurement errors into consideration. In the meta-analyses mentioned 

above, although some inconsistency of reliability was found, those researchers were still able to make 

generalizations about reliability. If constructs are entirely operational, there should be no need to 

conduct meta-analyses at all, and studying generalization is a waste of time. Every researcher could 

write his/her own survey items and invent his/her own construct in each individual study. The hidden 

assumption of generalization study is that there are certain invariant elements in constructs in spite of 

measurement errors. 

Causal relationships. The next issue to be addressed is the causal relationship. How could the 

causal relationship between factors and observed items be confirmed? One may argue that by 

mathematics alone, the causal relationship cannot be established. No matter how high the factor 

loadings are and how stable the factor structure appears to be, it seems to be a leap of faith to claim 

the clustering as a causal phenomenon.  

Take planet clustering and motion as a metaphor. When astronomers observe that there are nine 

planets orbiting around the sun in a solar system, they could theorize that a hidden force causes the 

planets to behave in this manner. This causal claim is data-driven rather than a leap of faith. By the 

same token, the clustering of observed items around an eigenvector is as empirical as the clustering of 

planets around a solar system. Although we cannot see forces of orbits, multiple observations of 

planetary movements imply the existence of the gravitational forces. Thurstone (1947), an early 

psychometrican who co-developed factor analysis with other researchers, also used the analogy of 

forces in physics to support the use of factors: “A simple example is the concept force. No one has 
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ever seen a force. Only the movement of objects is seen. The faith of science is that some schematic 

representation is possible by which complexities of movement can be conceptually unified into 

order.” (p.51) 

History of psychometrics. Some scholars criticized the causal interpretation of factor analysis 

using a historical approach. For example, Abbott (1998) argued that early psychometricians viewed 

factor analysis as a mathematical convenience to reduce complex data to simple forms in order to 

reconcile quantitative data with intuitive categories, and thus it ignored causality altogether. This view 

seems to be concurred by Laudan (1977). Laudan classified psychometrics in the early 20th century as 

a "non-standard research tradition" because it does not have a strong ontology and metaphysics. 

Rather its assumption is "little more than the conviction that mental phenomena could be 

mathematically represented." (p.105) 

There are several loopholes in this argument. Abbott argued that besides early psychometrics, 

biometrics, econometrics, and sociology are also a-causal. However, in the discussion of early 

psychometrics, Abbott did not use even one single citation to support his claim. It is true that 

Thurstone (1945) sometimes refer to theoretical entities as “convenient postulates,” but he did not 

deny the possibility of some degree of correspondence between constructs and reality. While 

discussing the origin and development of factor analysis, Vincent (1953) asserted that factor analysis 

is an attempt to identify the causes that are operating to produce the variance and to evaluate the 

contribution due to each cause. In his view, the argument among early psychometricians was 

concerned with whether one common cause or multiple causes were appropriate. 

Abbott cited Yule’s notion that correlation does not indicate a cause and effect to support his 

argument that early econometricians were associationsts rather than causationists. However, even if 

factor analysis and other statistical methods were a-causal at their early stage of development, it 

doesn’t necessary imply that this idea should not be altered and factor analysis today should continue 

to be interpreted in a non-causal fashion. Indeed, modern scholars view factor analysis as an 

application of the principle of common cause (e.g. Glymour, 1982; Glymour, Scheines, Spirtes, & 



  Causal models 11 

Kelly, 1987). If someone denies their work just because their ideas depart from the founding fathers, it 

is like rejecting the design of a V-8 engine just because it violates the idea of Henry Ford’s Model T. 

Path model 

Another component of SEM is the path model, which is also called the structural model. After 

latent cons tructs are identified, the relationships among these constructs are arranged to form "chains" 

or "paths." The example illustrated in Figure 3 is given by Lomax (1992). Based upon literature 

review, a researcher hypothesizes that "home background" could be a predictor to "school 

achievement," and "school achievement" could predict "career success", he defines such vague 

concepts as home background, school achievement, and career success by the factor model. 

Afterwards, a chain (path) of cause and effect is drawn among constructs. Then he/she employs SEM 

techniques to examine the fitness between the data and the model. Please keep in mind that this 

example is simplified. A real-life structural equation model could be more complicated. Because of 

the complexity of SEM, there are numerous possible ways to fit the data with the model. The fitness 

indices become the evidence of the causal inference in SEM. This point will be further explained in a 

later section.  

Figure 3. Example of a simple SEM 
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A structural model is a linear model. Critics are skeptical whether a linear model could 

represent and causally explain complex phenomena in the empirical world (e.g. Ling, 1982; Freedman, 

1987, 1997). Ling called the causal inference by path models “a form of statistical fantasy” (p.490), 

and Freedman called it “a faulty research paradigm.” (p.102) As a matter of fact, many times 

relationships in the real world do not fall into a linear pattern. In many datasets, the residuals between 

the linear fit and the data points are manifested in scatterplots. It seems natural that the line should go 

through all data points in a non-linear fashion. It is understandable why people believe that the linear 

model is an over-simplification of the world.  

Glymour, Scheines, Spirtes, and Kelly (1987) defended the sufficiency of linearity by using the 

fitness argument. According to Glymour et al, sciences have always proceeded by approximation and 

idealization. Linear approximation is not literally true, of course. Nevertheless, the principal 

justification for a linear model is that it explains the correlation data very well and no alternative 

linear model is readily available which provides a comparably good explanation of the correlations. In 

addition, linear models are conceptually simple, computationally tractable, and often empirically 

adequate.  

It is important to point out that all three criteria must be presented together. Computational 

tractability is a manifestation of the testability and repeatability. When data could be computed and 

the procedure can be replicated by the same algorithm, the model is said to be testable. Testability is a 

pre-requisite of empirical adequacy (fitness). If a model cannot be verified or falsified, no one could 

tell whether the data fits the model or not. 

Simplicity alone is not a good criterion of judging the validity of the model. First, simplicity 

does not warrant whether the model is true. Simplicity is relevant to the pragmatic issue of research 

methodology, but is irrelevant to the epistemic aspect (van Fraassen, 1980). It is a common practice 

that when researchers face two equally adequate models in terms of explanatory power, they tend to 

choose the simpler model. However, perhaps the complicated one is closer to the truth. Thus, this 

theory choice is pragmatic rather than epistemic.  
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Second, simplicity is a relative concept. On some occasions the balance between fit and 

parsimony can be objectified by mathematics. For example, when comparing regression models with 

different sets of predictors, model comparison and variable selection procedures can be employed to 

determine whether the increase of R2 can justify the increased complexity of the model. However, 

linear models in SEM are not necessarily simpler than non-linear models in regression analysis, and 

there is no objective way to tell whether one is simpler than another. Figure 4 shows a typical SEM. 

Even though the entire model is composed of linear models, through intuition it is by no means 

simple.  

Further, even within the same research methodology, simplicity is still a relative concept. For 

example, in the regression context, how many variables should be retained to formulate a simple 

model is tied to the fitness criterion. In other words, researchers attempt to achieve the balance of fit 

and parsimony. The issue of simplicity and fitness will be further discussed in the section concerning 

identification. In short, simplicity alone might be open to attack, but combining simplicity, tractability, 

and fitness provide a strong justification of using linear models. 

Figure 4. An example of SEM 
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Causal explanation power of SEM 

As mentioned before, testability is one of the criteria of establishing a valid model. Identification 

is a special case of testability in SEM. Pearl (2000) asserted that in a structural equation such as Y = 

BX+E, the causal connection between X and Y must have no other value except B. He used a circuit 

board as a metaphor to SEM. In a circuit board, in which different components are joined by different 

paths, it shows not only how the circuit behaves under normal conditions, but also shows how the 

circuit would mis-behave under millions of abnormal conditions. While there are many ways for a 

signal to go through the circuit, only one correct way allows the signal to reach the destination so that 

the electronic device could perform the proper function. By the same token, a structural model formed 

by a web of complex relationships can have a million ways of model mis-specification. Assume that 

there is only one way that the model can be properly specified. If one unique solution is found out of 

many possible combinations, then a cause and effect relationship can be claimed. The uniqueness of 

the solution is tied to the issue of identification.  

When there are more unknown parameters than the number of equations, this situation is called 

under-identification. For example, given the equation X+Y=2, this equation may yield infinite sets of 

solutions i.e. (X=1, Y=1), (X=3, Y=-1), (X=2, Y=0)… etc. For example, in Figure 5, the equation can 

be written as Y = a + bX. However, a line could fit the datum in any direction. In other words, X and 

Y could take any value. The influence of the Popperian principle of falsifability can be found in this 

case. When the resulting equations fail to specify a unique solution, the model is said to be 

unfalsifiable, because it is capable of perfectly fitting any data. To be specific, if a model is "always 

right" and there is no way to disprove it, this model is useless. Thus, in SEM testability could be 

viewed as falsifability.  
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Figure 5. Insufficient data for falsification 

 

If there are two equations such as X+Y=2 and 2X+Y=4, then the problem is more solvable. But 

the condition is still less than desirable. When there are two data points in the graph (see Figure 6), the 

statistician could draw a perfectly fitted line to connect two data points. Anyone could obtain two data 

points in any study and always come up with a “perfect solution.” Thus, this model is also not 

falsifiable.  

Figure 6. Perfectly fit data that cannot be falsified 
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When there is just enough information to get a value for every parameter, the model is said to be 

just-identified. However, when there are more equations than unknown parameters, the model is 

considered over-identified. With over-identification, there is also no exact solution. This condition at 

first seems unfortunate, but it is actually a blessing in disguise. Although we may not obtain an exact 

solution, we may define a criterion and obtain the most adequate solution (Chou & Bentler, 1995). 

Following this thread, Pearl endorsed the use of over-identified models for data/model fit. 

Petrovic (2000) further explained the importance of identification in causal interpretation by 

relating simplicity to fitness. If SEM would not have causal meaning, we should be able to compare 

observationally equivalent models solely on the basis of their parsimony rather than considering their 

respective choice of parameters. Why does the researcher burden himself/herself with an 

over-identified model when a simpler just-identified model could provide a satisfactory answer and 

save some CPU cycles? It is because an over-identified model could provide a better fit in terms of 

uniqueness. 

At a quick glance, the identification approach looks similar to the one used by experimenters as 

mentioned in the beginning. The goal of careful experimental design and hypothesis testing is to rule 

out rival hypotheses. If SEM that seeks for data/model fit is nothing more than finding the best 

explanation out of rival models , then why is it considered an improvement over conventional methods? 

Nevertheless, there are major differences between the experimental school and the SEM school. In the 

experimental school, non-experimental and observational studies are not qualified to generate strong 

causal claims. However, Glymour et al asserted that using SEM causal inferences are still possible 

with non-experimental data. In attempt to support this claim, Glymour et al developed a program 

named TETRAD as a supplement for SEM software programs such as LISREL and EQS. Since 

TETRAD is co-developed by Spirtes, Glymour, and Scheines, this module is also known as SGS. 

Given the input as the covariance structure (joint distributions of variables), TETRAD is capable of 

generating paths among factors/variables. It is important to note that TETRAD does not output a 

unique path model and affirm the causal relationships. Instead, the output from TETRAD is a family 



  Causal models 17 

of path models, which could be compatible with the covariance matrix. The automated path 

generation is an aid to, but not a replacement of, subsequent testing by human researchers. 

Second, in hypothesis testing such as a t-test or ANOVA, the researcher looks for the 

significance of a few effects. However, a structural model is holistic. The fitness judgment is based 

upon not just one omnibus test statistics. Besides the global fit information, SEM provides local fit 

information for the researcher to debug the model when misfit occurs. 

Graphical model 

Local fitness testing 

While Pearl (2000) rigorously defended SEM, he also developed the graphical model as an 

enhancement to SEM. According to Pearl, Data/model fitness and over -identification are necessary, 

but not sufficient conditions to infer cause and effect relationships. Pearl pointed out two potential 

problems of fitness tests: 

1. If some parameters are not identifiable, the first phase of the test may fail to reach 

stable estimates for the parameters and the investigator must simply abandon the test. 

2. If the model does not fit the data adequately, the researcher receives little information 

about which modeling assumptions are wrong.  

In this case, the global fitness test is not helpful. As Duheim pointed out, when a complex set of 

variables and hypotheses goes wrong, a global answer at most could tell the researcher that something 

is wrong somewhere. To rectify this situation, Pearl suggested that local fitness testing is a better 

alternative. Local fitness testing examines the restrictions implied by the model one by one. It is 

considered more reliable than the global testing because it involves fewer degrees of freedom and is 

not affected by irrelevant measurement error. As discussed before, every measurement model carries 

certain errors. By using local fitness test the errors are localized. 

Pearl’s approach is directly opposed to Laudan’s idea. In answering the Duheim challenge 

mentioned earlier, Laudan (1997) argued that when a complex set of theories is tested and generates 

an anomaly, the researcher should not try to localize blame or distribute credit to specific portions of 
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the model. Rather, the rational strategy is to select a better set because the anomaly affects each 

element within the complex. Pearl’s approach is considerably superior to Laudan’s as a solution to the 

Duheim’s problem. Laudan’s idea resembles the global test thinking, which could hinder scientific 

research from accumulation of learning and progress. In contrast, Pearl’s idea of local fitness testing 

can provide information for further model refinement. Unless the entire model is seriously 

mis-specified and global fitness testing correctly rejects the entire model, local fitness testing is no 

doubt a better choice. 

Covariance equivalent models  

When relationships are expressed in terms of functions and equations, the association could not 

be interpreted as causation without further justification. For example, Y = A + BX can be rewritten as 

X = (Y - A) / B. Thus, X could not be viewed as a cause of Y because the positions of X and Y could 

be swapped around the equation even if B is the only value that could solve the equation. In other 

words, the relationship between X and Y is not directional. 

Using a circuit analogy, Pearl argued that a circuit diagram captures the very essence of 

causation because a circuit diagram could predict outcomes but equations cannot. In a circuit the 

layout of paths is directional instead of functional. By drawing causal diagrams in a graphical model, 

one could go beyond testing equations to testing possible directions of equivalent models. Two 

models are considered equivalent if their reproduced covariance matrices are identical, regardless of 

the direction of the arrows. For example, X ?Y is equivalent to X ?  Y if the covariance structure 

between X and Y in the first model is the same as that of the second one. When there are many 

variables, different combinations of paths form numerous equivalent alternative models. Pearl relates 

the significance of equivalent models to the falsifiability criterion. In this way, the researcher does not 

test a single model but a whole class of observationally equivalent models. This class of equivalent 

models can be constructed and inspected graphically. If one unique solution comes up from many 

alternative models, a firm causal inference can be made. 

The logic of Glymouir’s TETRAD is very similar to Pearl’s approach. TETRAD also output a 
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pattern (class) of possible path models which are covariance equivalent. However, it may be the case 

that there are SEMs which are not covariance equivalent, but nonetheless fit the data almost equally 

well. This problem is addressed by outputting multiple patterns of possible SEMs (Scheines et al, in 

press).  

Testing all/many possible models can be further explained by using the metaphors of best subset 

regression and the counterfactual model. In regression when the researcher has many predictors, 

variable selection procedures such as maximum R2 can be used to try out all possible combinations of 

variables in order to obtain the best model. Testing covariance equivalent models in SEM is analogous 

to variable selection in regression. Both are considered research approaches for achieving the balance 

between simplicity and fitness. 

Testing covariance equivalent and other possible fit models could also be viewed as an 

expansion of the counterfactual model. Counterfactual questions, as the name implies, are “what-if” 

questions. When X occurs and Y follows, the researcher could not jump to the conclusion that X 

causes Y. The relationship between X and Y could be “because of,” “in spite of,” or ‘regardless of.” A 

responsible researcher would ask, “What would have happened to Y if X were not present?” In other 

words, the researcher does not base his/her judgment solely on the existing outcome, but also other 

potential outcomes. Thus, this model is also known as the potential outcome model. 

Controlled experiments often have a counterfactual aspect. To be specific, the control group 

gives the information about how Y behaves when X is absent while the treatment group tells the 

experimenter about how Y reacts when X is present. However, the counterfactual approach taken by 

experiments is limited in two senses. First, causal inferences can not be made to non-experimental 

data. Second, the experimenter can manipulate just a few scenarios.  

Similarly,  testing covariance equivalent and other fit models is also asking “what-if” questions. 

However, the researcher who employs the graphical model exhausts all possible scenarios by 

manipulating the model graphically (reversing arrows). For example, he/she may consider, “what 

would happens if we assume that Y causes X and Z causes Y, instead of assuming X causes Y, and Y 
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causes Z?” Moreover, manipulating possible models enables the researcher to draw causal 

interpretations from non-experimental data. Some researchers mis-perceived SEM as a competitor to 

randomized experiments (Pearl, 1995). Indeed, besides exploring more “what-if” scenarios, SEM 

extends the counterfactual model, in that the actual outcome from a given function may serve as an 

input to subsequent potential outcome functions (Greenland, 2000). 

Criticisms 

Probabilistic vs. deterministic causality 

Although the aforementioned causal models are philosophically sound and mathematically 

sophisticated, objections against these models are still visible in the academic arena. For example, 

while discussing causality in sociology, Abbott (1998) deliberately removed the mathematical models 

from his writing since he doubted the validity of probabilistic causation. In the same vein of 

prominent sociologist Durkheim, Abbott contended that causality means determination, which is 

necessary and sufficient. 

Probabilistic causation and deterministic causation is an old topic in philosophy. Determinists 

asserted that scientific laws could only be founded on certainty and on an absolute determinism, not 

on a probability (Hacking, 1992). In scientific determinism, every outcome is a necessity. i.e., given 

the cause, the effect must occur. This idea originated from French mathematician Laplace. Based on 

the Newtonian physics, Laplace claimed that everything is determined by physical laws. If a powerful 

intellect (called Laplace's demon) fully comprehends the Newtonian law, and knows the position and 

momentum of every particle in the universe, no doubt he could predict every event in the history of 

the universe. Laplace's determinism was applied to the realm of extended, spatial, material substance. 

Later determinism was expanded to the realm of psychological and sociological events.  

Philosophers have been puzzled by how one could implement causal relations in a 

non-deterministic context. Mulaik and James (1995), who are vocal endorsers of SEM, use the item 

response theory (IRT) to argue for the probabilistic causal model. In IRT, item difficulty and subject 

ability (theta) jointly determine a specific probability distribution on the response variable. Varying 
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ability and varying item difficulty varies the probability distribution of outcomes on the response 

variable. In IRT, estimation of subject theta is aided by the Bayesian approach, which updates the 

probability based upon new information (Mislevy, 1993). The probability that the examinee could 

answer a question correctly is contingent upon his/her ability. And his estimated ability is contingent 

upon his/her ongoing performance, especially in an adaptive test. In this scenario, it is more 

appropriate to interpret causation in a probabilistic fashion. By the same token, the probabilistic 

property of SEM should not be viewed as a sign of invalidity.  

Pearl (2000) is well-aware of the issue of probabilistic causality. In the graphical model, 

Bayesian Networks (BN) are employed to encode causal relations. In contrast to the determinist view 

of Laplace, causal relationships defined in BN are assumed to be probabilistic. Pearl (in press) argues 

that conventional statistics has difficulties in expressing causal concepts because statistics deals with 

static conditions. However, causal analysis involves a web of interacting variables and changing 

conditions, and thus BN is more applicable to causal analysis. In the graphical framework, BN 

performs three roles: 

1. to represent the causal assumptions about the environment; 

2. to facilitate economical representation of joint probability functions;   

3. to facilitate efficient inferences from observations. 

Pearl argued that owing to the wide acceptance of quantum mechanics, natural laws are said to 

be probabilistic and determinism is just a convenient approximation. In this view, BN appeals to the 

modern concept of physics. Quantum mechanics may be very remote to ordinate people. Nonetheless, 

Salmon (1984) pointed out that probabilistic causality, rather than deterministic causality, is more 

aligned to our common sense in everyday life. For example, heavy smokers do not necessarily get 

lung cancer. It is only probable that a heavy smoker could become a cancer patient. In advocating 

probabilistic causality, Salmon did not deny the existence of sufficient causes. However, sufficient 

causes constitute a limiting case of probabilistic cases, which seems to be restrictive.  
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Untested assumptions  

The most vocal critic against SEM is Freedman. Freedman (1997) denounced Glymour’s 

TETRAD program and criticized that “causation has to do with empirical reality, not with 

mathematical proofs based on axioms. The issue is not one of theorems, but of the connection 

between theorems and reality.” (p.76) In another paper that also refuted TETRAD, Freedman and 

Humphreys (1998) repeated the same notion, “There is no coherent ground— just based on the 

mathematics— for thinking that the graphs represent causation …  The mathematics in SGS will not be 

of much interest to philosophers seeking to clarify the meaning of causality.” (p.3) 

Interestingly enough, Freedman’s criticisms against Glymour and Pearl can also be framed in the 

Duhem question: “If assumptions A, B, C …  hold, then H can be tested against the data. However, if 

A, B, C …  remain in doubt, so must inferences about H.” (p.102). When facing an expected outcome, 

Duhem might say the theory remains inconclusive. In contrast, Freedman simply rejected the whole 

theory altogether. In Freedman’s eyes, untested assumptions are just “maintained hypotheses.” 

Freedman argued that the causal model suggested by Glymour carried many untested assumptions and 

the only empirical data are the covariance structure. Freedman gave the same challenge to Pearl: “To 

make real progress, those assumptions have to be tested.” (p.693) 

With regard to the validity of the assumptions for the path model, Freedman (1987) pointed out 

three possible threats: 

1. Measurement error in the exogenous (independent) variables. 

2. Nonlinear relationship between the endogenous (dependent) and exogenous variables. 

3. Omitted variables. 

Social scientists use latent factor models to address the first problem. However, Freedman said 

that this solution involves another set of assumptions. For example, it is assumed that there are 

repeated measurements linearly related to the latent factors. Pertaining to the second problem, 

Freedman said that when the variables are related in a non-linear fashion, the estimated coefficient 

would be biased. About the last problem, Freedman asserted that missing important variables could 
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lead to a mis-specified model. He mocked that “this problem too is well known to workers in the field, 

and their solution is to expand the system by adding more variables...Current social science theory 

cannot deliver that sort of specification with any degree of reliability, and current statistical theory 

needs this information to get started.” (p.109). Besides the preceding assumptions, Freedman (1997) 

questioned other assumptions embedded in SEM and TETRAD such as faithfulness and causal 

Markov conditions, but discussion of those assumptions is beyond the scope of this paper. 

Freedman (1997) dismissed all popular reasons of accepting SEM assumptions: 

In the social sciences, however, statistical assumptions are rarely made explicit, let alone 

validated. Questions provoke reactions that cover the gamut from indignation to 

obscurantism. We know all that. Nothing is perfect. Linearity has to be a good first 

approximation. The assumptions are reasonable. The assumptions do not matter. The 

assumptions are conservative. You cannot prove the assumptions are wrong. The bias will 

cancel. We can model the bias. We are only doing what everybody else does. Now we use 

more sophisticated techniques. What would you do? The decision-maker has to be better off 

with us than without us. We all have mental models; not using a model is still a model. 

(p.103) (Italic appears in the original text.) 

Use of latent factors and linear models have been discussed in previous sections. Freedman 

identified measurement error as one of the problems of the factor model. If error-free measurement is 

required in research, I am afraid that most research studies would be “mission impossible.” This 

section will concentrate on the problem of missing variables. It is true that certain variables that are 

crucial causes to the outcome may be overlooked by the researcher. However, It is totally acceptable 

to miss some variables and then expand the system by adding more later. It is curious that Freedman 

denied adding more variables as a viable solution because model specification with a high degree of 

certainty is difficult. Demanding the researcher to identify all relevant causal variables with certainty 

is like expecting the researcher to be a Laplace demon, who has the full knowledge of the whole 

world. We conduct research exactly because we don’t know the cause and effect, not because we 
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know everything. Our knowledge of the world is incomplete and it is perfectly fine to admit that any 

model or theory is fallible. 

Nevertheless, even if the researcher possesses the intelligence of the Laplace demon, is it 

necessary for him/her to include all relevant variables into the model? Like linearity, simplicity is also 

a reason that the researcher may omit certain “important” variables. All models are mis-specified in 

the sense that some variables are always excluded from the model. For example, a student asked me 

what variables cause school performance. I told him/her about my fifty-variable model: Study long 

hours, earn more money, marry a good wife, buy a reliable car, watch less TV, browse more often on 

the Web, exercise more often, attend church more often, pray more often, go to fewer movies, play 

fewer video games, cut your hair more often, drink more milk and coffee...etc. Needless to say, this 

over-specified model is not useful at all. It is understood that Freedman was concerned with 

“important variables,” not trivial variables. In this example, Freedman might worry that the most 

important variable “study long hours” could be left out while others such as “drink more milk and 

coffee” are retained. Nonetheless, methodologically speaking it is not a bad thing to leave out 

important variables, because the model will be simple enough to falsify.  

One question implied by the Duhem thesis is: Could theories be refuted? Quine (1976) argued 

that by adding or adjusting ad hoc hypotheses, any disputed theory could be accepted. If the model 

fails to fit the data, the researcher may say, “perhaps some important variables are missing.” In this 

manner, the same theory could be tested over and over by adding more variables endlessly. On the 

other hand, Freedman used the same argument to refuse the validity of causal models: A model is 

invalid if some important variables are missing. Neither Quine nor Freedman could answer the 

Duhem question adequately. No model could fit the data perfectly. Again, this type of question could 

also be endless no matter how fit or unfit the model is. Therefore, advocates of causal models have 

explicitly spelled out the criterion of identification to set the parameters of testability.  

In response to Freedman, Bentler (1987), one of the developers of EQS (a software program for 

SEM), defended the value of SEM in terms of simplicity and fitness test. Bentler stated that the 
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central question of SEM is whether ? =? (?), where ?  is a vector of population parameters and ? is a 

vector of smaller dimension than ? . For example, say there are 1000+ elements in ?  and the 

researcher can find 100 parameters to characterize ? , the researcher will have obtained a tremendous 

simplification in representing the data. Further, goodness of fit of any model might be judged by the 

size of residuals (the difference between the predicted and the actual) or by fit indices. Bentler argued 

that to consider SEM as worthless, Freedman rejected a valuable idea and his action was discarding 

“the baby with the bathwater.”  

At first glance Freedman’s strong demand for empirical support and skepticism of untested 

assumptions are reasonable. However, science does not progress based upon empiricism and a high 

degree of certainty. When Copernicus and Galileo developed the heliocentric model, there were not 

sufficient empirical data to support their claim. Before the introduction of the high-powered 

microscope, subatomic entities were considered untested assumptions. In the modern era, many 

sciences also proceed with untested assumptions and theoretical constructs. For example, the mental 

entities and processes proposed by cognitive psychologists are derived from a web of tested and 

untested assumptions. Asking for empirical substantiation and denouncing untested assumptions 

would inevitably reverse psychology to behaviorism. Inferences, by nature, are actions that take the 

researcher from one point to another. A typical example is that we usually draw an inference from a 

sample to a population, in which the size is infinite and the distribution is unknown. This is the type of 

uncertainty that researchers must live with unless the research goal is simply description, in which no 

inference is made.  

In reply to Freedman’s challenge, Spirtes and Scheines (1997) admitted that the TETRAD 

method is incomplete and there may be many other kinds of assumptions that should be investigated. 

Nevertheless, this is a systematic examination using partial knowledge. Scheines et al (in press) 

further articulated the benefits of using assumptions in the context of causal model building. The 

bolder assumptions the researcher makes, the more knowledge he/she can learn about the causal 

structure: 
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The result …  do not free one from having to make assumptions; instead, they make rigorous 

and explicit what can and cannot be learned about the world if one is willing to assume that 

causal relations are approximately linear and additive, that there is no feedback, that error 

terms are i.i.d and uncorrelated, and that the Causal Independence and Faithfulness 

assumptions are satisfied, then quite a lot can be learned about the causal structure 

underlying the data. If one is only willing to make weaker assumptions, then less can be 

learned. (p.2) 

Last but not least, Freedman devoted tremendous effort to argue against causal models, but 

didn’t spend a page to argue for a-causal models or suggest any better alternative. In the conclusion of 

Freedman’s paper (1987), he said, “This kind of negative article may seem incomplete. Path analysts 

will ask, not unreasonably, ‘Well, what would you do?’ To this question, I have no general answer.” 

(p.125) Even though he did not give an answer, other researchers would take no answer as an answer. 

Based on Freedman’s a-causal attitude, Abbott (1998) asserted that sociology should depart from 

causal accounting and spend more effort on descriptive work. In educational research, qualitative 

researchers independently adopt the a-causal notion and promote descriptive/narrative research. 

Studying phenomena without knowing why is just like operating a “black-box.” This attitude sets the 

clock backward. Take computing as a metaphor. It is not good enough for a computer programmer to 

correctly describe the signs of a system crash. A competent programmer should know what causes the 

system crash and is able to diagnose the problem. 

Conclusion 

The Duhem question is central to this discussion: When multiple variables, hypotheses, auxiliary 

assumptions exist, how could a researcher reach a conclusion or infer a causal and effect interpretation? 

To answer the Duhem question, the mathematical approach, such as Structural equation models, 

TETRAD, and graphical models, attempts to exhaust almost all possible combinations of paths. Other 

components of these causal models are also rigorously defended. Use of latent factors is jus tified by 

the argument of realism and the threat of measurement errors are addressed by Cronbach Alpha and 
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triangulation in factor analysis. Linearity of path models is justified in the context of achieving 

simplicity and fitness. By employing Bayesian Networks, probabilistic causality is considered 

legitimate and even better than deterministic causality. Although there are certain untested 

assumptions in these causal models, theories are fallible and scientific inquiry essentially carries some 

degree of uncertainty, yet SEM is a good tool to make causal inferences based upon incomplete 

knowledge.  

 

Acknowledgement 

Special thanks to Dr. Brad Armendt and Mr. Shawn Stockford for reviewing this paper 



  Causal models 28 

References 

Abbott, A. (1998). The causal devolution. Sociological Methods & Research, 27, 148-180. 

Baron, J. (2000). Thinking and deciding (3rd ed.). Cambridge: Cambridge University Press. 

Bentler, P. (1987). Structural modeling and the scientific method: Comments on Freedman’s critique. 

Journal of Educational Statistics, 12, 151-157. 

Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (in press). Philosophy of science and 

psychometrics: Reflections on the theoretical status of the latent variable. 

Campbell, D. & Stanley, J. (1963). Experimental and quasi-experimental designs for research.  

Chicago, IL: Rand-McNally.  

Chou, C. H., & Bentler, P. M. (1995). Estimates tests in structural equation modeling. In R. H. Hoyle 

(Eds.), Structural equation modeling: Concepts, issues, and applications  (pp. 37-55). Thousand 

Oaks: Sage Publications. 

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis issues for field 

settings. Boston, MA: Houghton Mifflin Company. 

Duhem, P. M. M. (1954). The aim and structure of physical theory.  Princeton: Princeton University 

Press. 

Freedman, D. (1987). As others see us: A case study in path analysis. Journal of Educational Studies, 

12, 101-128.  

Freedman, D. (1995). Discussion of causal diagrams for empirical research by J. Pearl. Biometrika, 82,  

692-693. 

Freedman, D. A. (1997). From Association to Causation via Regression. Advances in Applied 

Mathematics, 18,  59-110. 

Freedman, D. A. & Humphreys, P. (1998) Are there algorithms that discover causal structure? 

Technical Report 514. Berkeley, CA: University of California, Berkeley.  

Glymour, C. (1982). Casual inference and causal explanation. In R. McLaughlin (Ed), What? Where? 

When? Why? Essays on induction, space, and time, explanation (pp. 179-191). Boston, MA: D. 



  Causal models 29 

Reidel Publishing Company. 

Glymour, C. (1986). Comments: Statistics and metaphysics. Journal of the American Statistical 

Association, 81, 964-966. 

Glymour, C., Scheines, R., Spirtes, P, & Kelly, K. (1987). Discovering causal structure: Artificial 

intelligence, philosophy of science, and statistical modeling. Orlando, FL: Academic Press, Inc. 

Glymour, C. & Cooper, G. F. (eds.). (1999).Computation, causation, and discovery. Cambridge, Mass.: 

MIT Press. 

Greenland, S. (2000). Causal analysis in the health sciences. Journal of the American Statistical 

Association, 95, 286-289. 

Hacking, I. (1992). The taming of chance. Cambridge, UK: Cambridge University Press. 

Hoyle, R. H.. (1995). The structural equation modeling approach: Basic concepts and fundamental 

issues. In R. H. Hoyle (Eds.), Structural equation modeling: Concepts, issues, and applications  

(pp. 1-15). Thousand Oaks: Sage Publications. 

Kelley, T. L. (1940). Comment on Wilson and Worcester's Note on Factor Analysis. Psychometrika, 5, 

117-120. 

Kerlinger, F. N. (1986). Foundations of behavioral research (3rd ed.). Forth Worth, TX: Holt, Rinehart 

and Winston. 

Laudan, L. (1977). Progress and its problems: Toward a theory of scientific growth.  Berkeley, CA : 

University of California Press. 

Ling, R. (1982). Review of “Correlation and causation” by David Kenny. Journal of American 

Statistical Association, 77,  481-491. 

Lomax, R. G. (1992). Statistical concepts: A second course for education and the behavioral sciences. 

White Plains, NY: Longman.  

Mislevy, R. (1993). Some formulas for use with Bayesian ability estimates. Educational & 

Psychological Measurement, 53, 315-329. 

Mulaik, S. A., & James, L. R. (1995). Objectivity and reasoning in science and structural equation 



  Causal models 30 

modeling. In R. H. Hoyle (Eds.), Structural equation modeling: Concepts, issues, and 

applications (pp. 118-127). Thousand Oaks: Sage Publications. 

Pearl, J. (1995). Rejoinder to discussions of causal diagrams for empirical research. Biometrika, 82,  

702-710. 

Pearl, J. (2000). Causality: Models, reasoning, and inference. New York: Cambridge University Press 

Pearl, J. (in press). Causal inference in the health science: A conceptual introduction. 

Petrovic, M. (2000). Probabilistic and structural causality.  [On-line] Available URL: 

http://www.soc .washington.edu/courses/soc582/misha3.html 

Salmon, W. (1984). Scientific explanation and the causal structure of the world.  Princeton, NJ: 

Princeton University Press. 

Spirtes, P., and Scheines, R. (1997). Reply to Freedman. In S. Turner and V. McKim (Eds.), Causality 

in Crisis: Statistical Methods and the Search for Causal Knowledge in the Social Sciences. 

(pp.163-176). University of Notre Dame Press. 

Scheines, R., Spirtes, P., Glymour, C., Meek, C., and Richardson, T. (in press). The TETRAD Project: 

Constraint Based Aids to Causal Model Specification, Multivariate Behavioral Research.  

Quine, W. V. O., (1976). Two Dogmas of Empiricism" In S. G. Harding (Ed.), Can theories be refuted?: 

essays on the Duhem-Quine thesis  (pp. 41-64). Boston : D. Reidel Pub. Co.  

Thompson, B., & Vacha-Haase, T. (2000). Psychometrics is datametrics: The test is not reliable. 

Educational and Psychological Measurement, 60, 174-195. 

Thurstone, L. L. (1947). Multiple-factor analysis: a development and expansion of the vectors of mind. 

Chicago: The University of Chicago press.   

Vacha-Hasse, T. (1998). Reliability generalization: Exploring variance in measurement error affecting 

score reliability across studies. Educational and Psychological Measurement, 58,  6-20. 

Van Fraassen, B. C. (1980). The scientific image. Oxford: Clarendon Press. 

Vincent, D. F. (1953). The origin and development of factor analysis. Applied statistics, 2, 107-117. 

Yu, C. H. (2001). An Introduction to computing and interpreting Cronbach Coefficient Alpha in SAS. 



  Causal models 31 

Proceedings of 26th SAS User Group International Conference. [On-line] Available: URL: 

http://seamonkey.ed.asu.edu/~alex/pub/cronbach.html 

 


