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ABSTRACT 

There are different approaches to counteract the threat of multicollinearity in regression modeling, such as centered-
score regression, orthogonalization, partial least square, and ridge regression. Principal component regression (PCR) 
is an under-use option because it takes multiple steps to accomplish the goal. This paper will illustrate different steps 
of performing PCR using the data set compiled by Programme for International Student Assessment (PISA) and a few 
other databases. Typically, PCR consists of four steps: 1. Principal component analysis (PCA), 2. Principal 
component regression (PCR) under partial least squares (PLS), 3. Factor analysis, and 4. OLS regression. Initially, 
PCA is run to verify whether collinear predictors could be combined to form a composite score. Further, the 
component structure is verified by principal component regression under PLS. While PCA suggests the proper 
number of principal components by indicating the loadings, PCR makes the same type of suggestion based on the 
PRESS statistics and variance explained in the model effects. Next, in order to obtain a set of better weights to form a 
composite index, factor analysis with the varimax rotation is employed. Last, the composite index is used to run the 
OLS regression model. 

INTRODUCTION 
 
The absence of multi-collinearity is essential to a multiple regression model. In regression when several predictors 
(regressors) are highly correlated, this problem is called multicollinearity or collinearity. When predictors suffer from 
multicollinearity, using OLS might lead to inflated regression coefficients. These coefficients could fluctuate in sign 
and magnitude as a result of a small variation in the dependent or independent variables (Fekedulegn, Colbert, Hicks, 
Schuckers, 2002). Collinearity is problematic when one's purpose is explanation rather than mere prediction 
(Vaughan & Berry, 2005). Collinearity makes it more difficult to achieve significance of the collinear parameters. But if 
such estimates are statistically significant, they are as reliable as any other variables in a model. And even if they are 
not significant, the sum of the coefficient is likely to be reliable. In this case, increasing the sample size is a viable 
remedy for collinearity when prediction instead of explanation is the goal (Leahy, 2001). However, if the goal is 
explanation, measures other than increasing the sample size are needed. There are many solutions to this problem, 
such as centered-score regression, orthogonalization, partial least square, ridge regression, and principal component 
regression (PCR) (Yu, 2008). Space constraints prohibit a thorough discussion of all remedies, and thus in this paper 
only PCR (Fritts, Blasing, Hayden, & Kutzbach, 1971) is illustrated with archival datasets.  

DATA SOURCES 

Due to the poor performance of US students in international math and science tests, such as Program for 
International Student Assessment (PISA), many authors worry that the US lead in science is in jeopardy. President 
Obama introduced the phrase "Sputnik moment" to characterize this situation (Calmes, 2010; Kornblut & Wilson, 
2011). In response to this concern, the author used PCR to determine whether PISA test scores as well as other 
economic- and education- related variables are good indicators of economic performance. PISA was administered 
every three years (2000, 2003, 2006, and 2009) by Organization for Economic Cooperation and Development 
(OECD) to 15-year old students across various countries. In this example the 2000 PISA test scores (OECD, 2010) 
were used because it takes a decade to see the return of investment in education.  
 
Common economic- and education- related variables for international comparison, such as real GDP per capita 
(RGDPL), openness in trade (OPENC), investment share of real GDP (KI), gross secondary school enrollment, the 
number of scientific and technical journal articles per capita, the number of R&D researchers per capita, and total 
area of the nation, were included in this study.  GDP per capita in 2007 was treated as the dependent variable while 
all the rest of the above, as well as PISA tests scores, were year 2000 figures and they were used as independent 
variables. 
 
Population, OPENC, and KI measured in 2000, and real GDP per capita (RGDPL) in 2007, were downloaded from 
Pen World Table (PWT) maintained by the Center for International Comparisons of Production, Income and Prices at 
the University of Pennsylvania (2010). Gross secondary school enrollment, the number of scientific and technical 
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journal articles, and the number of R&D researchers collected in 2000, were obtained from the World Bank Group 
(2010). Although the World Bank’s query tool shows that 2008 and 2009 data are available, there are too many 
missing values in the variables of the focal interest. The latest sufficient data could be found in 2007 only. Also, 
University of Pennsylvania has data up to 2007 only. Total area of a nation was obtained from the United Nations 
(2010); this figure tends to be stable within a decade. In PISA 2000, data for the Netherlands were excluded due to 
insufficient response rates of students and schools. Last, neither Word Bank nor University of Pennsylvania has 
sufficient data for Liechtenstein in 2007, and thus this observation was also excluded. 

CHECKING ASSUMPTIONS FOR OLS 

Regression analysis requires the assumption of linearity, but in GDP per capita, investment share of real GDP per 
capita, and total area, the extremity of some data values might hinder regression from detecting the hidden pattern. 
To counteract this problem, a logarithmic transformation was employed to straighten the data. Initially, OLS 
regression was run in SAS© (SAS Institute, 2009) for exploratory purposes. The following is the SAS macros for 
checking the assumptions (Yu, 2010):  
 

%macro reg (name, dv, x1, xlast); 
ods rtf file="&name..rtf" path="&dir"(URL=none) style=journal; 
proc reg data=temp; model &dv =  
&x1 &x2 &x3 &x4 &x5 &x6 &x7 &x8/vif; 
output out=two 
        p=y_hat 
        r=y_res; 
proc gplot data=two; plot y_res * y_hat; 
title "Check homoescedasticity and independence of residuals"; 
proc univariate normal plot data=two; var y_res; 
HISTOGRAM y_res/normal(color=red fill); 
PROBPLOT y_res; 
QQPLOT y_res; 
title "Check normality of residuals"; 
proc gplot data=temp; plot &dv * (&x1 - &xlast); 
title " "; 
run; 
ods rtf close; 
quit; 
%mend reg; 

 

Although the assumptions for OLS regression, such as normality and independence of residuals, were met, it was 
found that Luxemburg was an outlier in multiple dimensions, and thus this observation was excluded from regression 
analysis. In addition, PISA science and math test scores are closely correlated, indicated by their high variation 
inflation factor (PISA math’s VIF = 23.98, PISA’s science VIF = 15.98), and as a result, multicollinearity might have 
affected the stability of the model. To remediate this problem, PCR was employed as an alternative (SAS Institute, 
2009). 

PRINCIPAL COMPONENT ANALYSIS 

The first step of counteracting multicollinearity is PCA, which is a dimension reduction technique that does not take 
the correlation between the dependent variable and the independent variables into account. Thus, PCA is considered 
an unsupervised dimension reduction method. The advantage of this approach is simplicity and therefore this type of 
dimension reduction is known as “parsimonious summarization” (Maitra & Yan, 2008). The following is the SAS code 
for running PCA: 

proc princomp; 
var pisa2000math pisa2000sci logki logarea GSSE2000 openc researcherspc 
logarticlepc; 

 

Table 1 shows the loadings in each eigenvector yielded from PCA of all independent variables.  In Table 1, the best 
loading of each variable is indicated by a bolded number. It is obvious that PISA math and science scores belong to 
the same principal component while all other variables should be treated as individuals. Hence, it is a reasonable 
assumption that PISA math and science scores could be reduced to a single principal component. However, in PCA 
the loading of PISA science score is negative. As a remedy, later factor analysis with varimax rotation was employed 
in an attempt to obtain a set of better weights.    
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  Table 1. Principal components analysis of all predictors. 

Variable Prin. 1 Prin. 2 Prin. 3 Prin. 4 Prin. 5 Prin. 6 Prin. 7 Prin. 8

PISA math  0.517200 0.152846 -.086731 -.097854 -.154208 0.282416 -.231076 0.731511

PISA science  0.496109 0.181937 -.158437 -.127237 -.057514 0.506785 -.043500 -.646105

Log(Ki)  0.399195 -.125752 -.363775 0.290402 0.670608 -.198618 0.338818 0.064828

Log(Area)  -.224191 0.609222 0.057450 -.077657 0.023531 0.255935 0.692752 0.152623

School enrollment  0.151997 0.285523 0.617761 0.679688 0.114597 0.041783 -.184547 -.053229

Openness in trade 0.204786 -.567983 0.163183 0.263116 -.479925 0.156461 0.532505 0.035068

Researchers/capita 0.195950 -.221648 0.647426 -.573322 0.388026 0.022306 0.115124 0.017392

Log(articles/capita) 0.416323 0.321427 0.065762 -.154817 -.358635 -.729202 0.138332 -.124807

 

PRINCIPAL COMPONENT REGRESSION: PRESS 

Next, principal component regression (PCR) was employed to verify the suggestion from PCA. In SAS, PCR is not a 
standalone procedure. Rather, it is an option under partial least square (PLS). Like principal component analysis, the 
basic idea of PLS is to extract several latent factors and responses from a large number of observed variables. 
Therefore, the acronym PLS is also taken to mean “projection to latent structure.” In order to invoke PCR, the option 
“METHOD=PCR” must be specified in the SAS code.  
 
PLS has built-in resampling features, such as leave-one-out (Jackknife) and cross-validation (dividing the data into 
different subsets for validation). Strictly speaking, leave-one-out and cross-validation are different approaches of 
resampling, but in PLS both are regarded as cross validation techniques. If the former is used, the SAS code is 
“CV=ONE”. If the latter is chosen, then the code is “CV=TESTSET”. In this example, leave-one-out was selected 
because the data set is too small for further partitioning. In addition to the preceding options, the analyst could also 
choose “CV=RANDOM”, a cross validation technique that randomly resamples subsbets from the original data set. 
However, if you re-run the procedure again, you will not be able to replicate the same result. Thus, this option is not 
recommended. 
 
There are different ways of determining the proper number of components to be retained. One of these methods is 
the predicted residual sum of squares (PRESS). PRESS is the default in SAS, and in the following 
“CVTEST(stat=press)” is added to the SAS code for demonstration only. 
 

proc pls method=pcr cv=one cvtest(stat=press); 
model logrgdpl=pisa2000math pisa2000sci logki logarea GSSE2000 openc researcherspc 
logarticlepc; 
 

In PLS the emphasis is on prediction rather than explaining the underlying relationships between the variables. Thus, 
PRESS takes mathematical convenience and parsimony into account only. The analyst must make his own judgment 
to determine whether the result is the best for conceptual explanation.  Table 2 shows that six components should be 
retained according to PRESS. While the model may be more economical than the 7-component model suggested by 
PCA, it might not be the best conceptual model. 
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Table 2. Press statistics 

 # of 
Factors 

Root Mean 
PRESS

Prob > 
PRESS

 # of 
Factors

Root Mean 
PRESS

Prob > 
PRESS 

0 1.052632 0.0320 5 0.837301 <.0001 

1 0.772102 0.1150 6 0.613919 1.0000 

2 0.615756 0.4940 7 0.648962 0.2810 

3 0.69023 0.2800 8 0.804963 0.1200 

4 0.780427 0.0060  

 

Minimum root mean PRESS 0.6139

Minimizing number of factors 6

Smallest number of factors with p > 0.1 1

 

PRINCIPAL COMPONENT REGRESSION: VARIANCE EXPLAINED 

In this case the analyst overrides PRESS and considers the alternative: Checking the variance explained in the model 
effects. In the following SAS code, eight factors are specified in order to show all possible results: 
 
proc pls method=pcr nfactor=8; 
model logrgdpl=pisa2000math pisa2000sci logki logarea GSSE2000 openc researcherspc 
logarticlepc; 
 
Table 3 illustrates the percent variation accounted for by different numbers of principal components. If only one 
principal component is retained (i.e. collapse all eight variables into a single measure), the percent of the variance 
explained in the model is only 41.23%. Needless to say, this is inadequate. If all eight principal components are 
treated as independent variables (i.e. no variable reduction is used), the percent of variance explained becomes 
100%, but the model might be over-fitted.  
 

Table 3. Percent variation accounted for by principal components. 
 

Number of 
Extracted 

Factors 

Model Effects Dependent Variables

Current Total Current Total

1 41.2372 41.2372 53.2414 53.2414

2 24.0250 65.2622 17.1231 70.3645

3 14.6419 79.9041 0.0162 70.3807

4 8.3075 88.2115 0.4853 70.8660

5 5.5401 93.7516 1.4589 72.3249

6 3.4667 97.2184 12.2936 84.6185

7 2.4464 99.6648 2.2881 86.9066

8 0.3352 100.0000 0.0059 86.9125

 
To locate the optimal point, the number of principal components is plotted against the percent of variance explained, 
as shown in Figure 1. As expected, going from one principal component to two components results in a substantive 
gain, but as more and more components results are added, the gain becomes less and less. When the number 
increases from 7 to 8, the two points form a plateau.  Therefore, a seven-variable solution seems to be optimal. 
Taking both of the results yielded from PCA and PCR into account, it is a logical conjecture that PISA math and 
science scores could be combined as a single variable, and thus seven variables were included into OLS regression. 
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Figure 1. The number of principal components against the percent of variance explained. 

FACTOR ANALYSIS WITH VARIMAX 

Based on the optimal point of variance explained, the researcher decided to adopt a 7-factor model. As mentioned 
before, although PCA suggests a 7-component model, some loadings are not desirable. As a remedy, factor analysis 
with the varimax rotation was employed: 
 

proc factor rotate=varimax scree n=7; 
var pisa2000math pisa2000sci logki logarea GSSE2000 openc researcherspc 
logarticlepc; 

 
As indicated in Table 4, the result of factor analysis confirms that of PCA because, based on the factor loadings 
(highlighted by bolded numbers). PISA math and science scores were considered to belong to the same factor while 
other variables were suggested to be standalone. Nonetheless, due to the advantage of factor rotation (varimax), 
factor analysis yields a better set of composite indices for PISA scores because both weights are positive. 
 
    Table 4. Factor loadings by varimax rotation. 

 Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

PISA 2000 math score 0.92861 0.08523 0.11160 0.08429 0.20201 0.21593 -0.08811

PISA 2000 science score 0.95294 0.03603 0.05449 0.06116 0.24082 0.11456 0.01582

Log(Ki) in 2000 0.39851 0.16218 -0.01141 -0.02081 0.88981 0.06581 -0.13502

Log(Area) in 2000 -0.06521 -0.61806 0.16361 -0.17108 -0.25436 0.04028 0.70098

Gross sec. school enroll. in 2000 0.11958 -0.02856 0.98055 0.09893 -0.00925 0.09427 0.06823

Openness in trade in 2000 0.05378 0.97504 0.00393 0.15092 0.09106 -0.02279 -0.12165

R&D researchers per capita in 2000 0.09573 0.17375 0.10191 0.97078 -0.01259 0.04677 -0.07423

Log(Sci. articles per capita in 
2000) 

0.60903 -0.05932 0.17903 0.08221 0.09043 0.75989 0.03400

 

OLS REGRESSION 

PISA math and science scores are combined as a composite score using the weights from factor analysis. Table 5 
shows the result of the OLS regression model. No violation of assumption, including the absence of collinearity, was 
found. It shows that when other standard variables for international comparison were taken into account, the number 
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of scientific and technical journal papers per capita in 2000 appears to be the most significant predictor to GDP per 
capita in 2007 (p=.0002), and PISA test scores did not substantively contribute to the overall variance explained (R2 = 
0.8691; adjusted R2=0.7927). 
 
            Table 5. Parameter estimates of OLS regression with PISA math and science scores as a single component. 

Variable 
Parameter

Estimate
Standard 

Error t Value Pr > |t|

Intercept 11.81295 1.61832 7.30 <.0001

PISA 2000 math and science score -0.00030550 0.00090978 -0.34 0.7428

Log(Ki) in 2000 0.40061 0.27889 1.44 0.1764

Log(Area) in 2000 0.03209 0.03933 0.82 0.4304

Gross secondary school enrollment in 2000 -0.00026466 0.00257 -0.10 0.9197

Openness in trade in 2000 0.00048488 0.00143 0.34 0.7403

R&D researchers per capita in 2000 0.00002718 0.00014703 0.18 0.8565

Log(Scientific/technical journal articles per capita in 2000) 0.39280 0.07447 5.27 0.0002

 
DISCUSSION 
 
In summary, PCR consists of four steps: 1. PCA, 2. PCR under PLS, 3. Factor analysis, and 4. OLS regression. 
Initially, PCA was run to verify whether PISA science and math test scores could be combined to form a composite 
score. Further, the component structure was verified by principal component regression under the partial least 
squares (PLS) procedure. It is important to point out that PCR is not a standalone procedure in SAS; rather, it is 
offered as an option under PLS. While PCA suggests the proper number of principal components by indicating the 
loadings, PCR makes the same type of suggestion based on the PRESS statistics and variance explained in the 
model effects. Next, in order to obtain a set of better weights to form a composite index of PISA math and science 
scores, factor analysis with the varimax rotation was employed. Last, instead of regressing PISA science and math 
test scores on the dependent variable directly, the composite index of these two independent variables was used to 
run the OLS regression model. 
 
When prediction instead of explanation is the research goal, multicollinearity is not a serious threat to the validity of 
regression modeling. There are many remedies but it is important to emphasize that some of the fixes also aim to 
making prediction rather than explanation. This example shows that by following PRESS a parsimonious six-
component model should be used. However, only PISA math and science test scores were combined as one variable 
because it is the conviction of the author that all other variables should remain standalone.  Nonetheless, PCA, factor 
analysis, and checking variance explained in PCR substantiate this assertion. As a result, the OLS regression is more 
meaningful while the problem multicollinearity is solved. 
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