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A plethora of DSML methods

* Single methods (non-ensemble)

 Support vector machine (SVM): linear, polynomial
kernel, radial basis function (RBF), sigmoid.

» Naive Bayes

 Decision tree: C5, Chi-square automatic interaction
detection (CHAID), Quick, unbiased, efficient

statistical tree (QUEST), Classification and regression
tree (CRT)






Which one should | use? Any consensus?

* Neural network is a black box; it is hard to interpret.

* |n some situations, bagging outperforms boosting whereas in others the
outcomes are reversed (Chandrahasan et al.2011, Dietterich 2000,
Khoshgoftaar et al. 2011, Kotsiantis 2013, Wang et al. 2015, Zaman and
Hirose 2011).

» The difference is minimal. In a study comparing between random forest
and XGBoost in breast cancer risk prediction, random forest achieved
74.73% accuracy while XGBoost obtained 73.63% (Kabiraj et al. 2020).

« XGBoost is more widely used than gradient boost and Adabost because of
its higher accuracy, faster speed, and less sensitivity to noisy data (Deng
et al. 2020, Niu 2020).
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creening - JMP Pro O

Fits many different predictive models and provides summaries of measures of fit.

Classification problem

« JMP Pro
* Predict diabetes

* |t is always a good practice
to include traditional
statistical procedures as
the baseline (e.g. logistic
regression). You may be
surprised!
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Run SVM

£ ROC Curve for Y Binary = Low

< Receiver Operating Characteristic on Training Data

1.004

0.90-

0.80+

— Low
— High

Y Binary  Area
0.9192
0.9192

A Receiver Operating Characteristic on Validation Data

1.004

0.90-

0.80-

0.70+ 0.70+

0.60 -

0.50+

0.60—

0.50+

* Predicted _
rate for low - e
risk group:
50%

* You can flip a
coin!

Sensitivity
True Positive
Sensitivity
True Positive

— i
0.40 0.60
1-Specificity
False Positive

1 1
0.40 0.60
1-Specificity
Falze Positive
£ Confusion Matrix
[* Set Probability Threshold

£ Training 4 Validation

Actual

Y Binary
Low
High

Predicted
Rate
Low High
0.860 0.031
0.446 0.554

Actual

Y Binary
Low
High

Predicted
Count
Low High

219
37

7
46

Misclassification
Rate
0.1424

Actual

Y Binary
Low
High

Predicted
Rate
Low High
0.916 0.084
0.500 0.500

Actual

Y Binary
Low
High

Predicted
Count
Low High

a7
19

a
19




Classification
problem

* |BM SPSS
Modeler: Auto
classifier.

 Again, include
logistic
regression as a
baseline.
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Classification
problem

 The best model is
random forest.

» Logistic
regression is near
the bottom!
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: Model Screening - JMP Pro O
Fits many different predictive models and provides summaries of measures of fit.
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SPSS Modeler
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JMP Pro: Model comparison

PISA2006_USA_Canada - Model Comparison - JMP

4 =/ Model Comparison
[ Predictors

£ Measures of Fit for proficiency
Entropy Generalized Mean Misclassification
Creator 2.4.6.8 RSquare RSquare Mean-Logp RMSE Abs Dev Rate N
Fit Ordinal Logistic | | | § ! 0.0765 0.1322 0.6200 0.4p42 0.4313 0.3407 13820
Bootstrap Forest [} | | | 0.1345 0.2230 05832 0.4448 04259 0.2807 1623
ted Tree Ty 0.0627 0.1096 0.6325 0.4600  0.4525 0.2468 16602

4 AUC Comparison

4 AUC Comparison for proficiency= 1

Predictor AUC 5td Error Lower 95% Upper 95%

Prob[ 1] 0.0834 0.0046 0.6743 0.6924

Prob(proficiency== 1) 0.7801 00036 0.7729 0.7872

Prob(proficiency== 1) 2 0.6743 0.0042 0.6660 0.65826

AUC

Predictor vs. Predictor Difference Std Error Lower 95% Upper95% ChiSquare Prob:ChiSq
Prob[ 1] Prob(proficiency== 1) -0.097 0.0019 -0.100 -0.093 27081 1*
Prob[ 1] Prob(proficiency== 1) 2 0.0091 0.0007 0.0076 0.0105

Prob(proficiency== 1) Prob(proficiency== 1) 2 0.1058 0.0019 0.1020 0.1085

Test ChiSquare DF Prob=ChiSq
All AUCs equal 3067.02 2 <. 00071* h




SAS Enterprise
Guide

« Rapid Data Mining
 Totally automatic
» Just a few clicks




SAS Enterprise Miner

Sample | Explore

* Interactive model
comparison

» Change parameters
along the way.




SAS Viya: Model Studio
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Challenges

 When the data set are massive or/and the analytical tasks are
complicated, running multiple models in one job (model screening or
model comparison) can take a long time.

 Solution: High performance computing (HPC)
» designed to utilize multi-threading.

« Complex analytical tasks are divided across processing nodes in a
distributed system, and at the end the results are assembled into a
single, final presentation.

« Drawback: if HP procedures are run on an environment that do not have
HPC resources, it will take longer or cannot run at all!



Challenges

* |f HPC resources are NOT available, do variable pre-screening!
* |s it necessary to collect so many data (e.g. 400-500 fields)?

* |s it necessary to include all 400-500 features (variables)?

 Variable selection: drop the variables that are less important or
unimportant e.g. stepwise regression (traditional, not
recommended), generalized regression, and predictor screening
(better)

» Dimension reduction: Collapse variables into a few dimensions e.g.
principal component analysis (PCA), partial least square.

» Use the remaining for model comparison.



https://journalofbigdata.springeropen.com/articles/10.1186/s40537-018-0143-6

After select the champion model...

£ Column Contributions

Number
Term of 5plits 55
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Information about careers 374 120967669 |
Parents' emotional support perceived by student 266 106812479 ]
Resilience 478 10404839 ||
Body image 378 102004639 |
Perceived feedback 436 90177722 ||
zeneral fear of failure 353 801114583 |
Subjective well-being: Positive affect 207 699484756 |
bt Sl Social Connections: Parents 225 95923813
Perception of cooperation at school 177 328041924 |
Parents' emctional support 28 427278656

Eigenvalue




Conclusion

%/ * Do pre-screening to cut down the number of predictors.

.
 Using automated model comparison is OK, but should be used with
caution.

* Include traditional modeling methods as the baseline (e.g. logistic
regression, OLS regression, stepwise regression...etc.)

» Use more than one software packages. If they don’t agree, turn to
interactive model comparison.

» Use HP procedures if resources are available.

» After selecting the best model, retain predictors by looking for the
inflection point.




