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This paper aims to illustrate how data visualization could be 
modeling, using an example with multi
item response theory and factor analysis to identify a psychometric model that investigates two or 
more latent traits. While it may seem convenient to accomplish two tasks by employing one 
procedure, users should be cautious of problematic items that affect both factor analysis and IRT. 
When sample sizes are extremely large, reliability analyses can misidentify even random number
meaningful patterns. Data visualization, such as median smoothing, can be used to identify 
problematic items in preliminary data cleaning.

Data visualization is an indispensable tool for 
pattern recognition in data analysis (Cleveland, 1993; 
Few, 2009; Tufe, 1990, 1997, 2001 2006; Yu & 
Stockford, 2003; Yu, 2014). While some data 
visualization techniques display both raw data and 
smoothed structure (e.g. regression line) 
simultaneously, some aim to reduce data noise by 
smoothing only (summarizing data). Smoothing is 
prevalent in many data visualization techniques though 
users may not be aware of it. Take the histogram as an 
example. While requesting a histogram from any 
statistical software package seems to be 
straightforward, the appearance of the histogram is tied 
to the interval width, also known as the binwidth. 
Usually a statistical package does not show all data 
values with numerous bars. Rather, it groups values 
into several intervals (bins). When a wider binwidth is 
used, the histogram appears to be smoother. One of 
the problems of histogram binning is that the choice of 
binwidth is arbitrary. As a result, the same data set 
might appear differently in different histograms. For 
example, in Figure 1 the distribution of the histogram 
appears to be normal when the binwidth is set to one, 
but it turns to a skew distribution when the binwidth is 
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This paper aims to illustrate how data visualization could be utilized to identify errors prior to 
modeling, using an example with multi-dimensional item response theory (MIRT). MIRT combines 
item response theory and factor analysis to identify a psychometric model that investigates two or 

t may seem convenient to accomplish two tasks by employing one 
procedure, users should be cautious of problematic items that affect both factor analysis and IRT. 
When sample sizes are extremely large, reliability analyses can misidentify even random number
meaningful patterns. Data visualization, such as median smoothing, can be used to identify 
problematic items in preliminary data cleaning. 
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example, in Figure 1 the distribution of the histogram 
appears to be normal when the binwidth is set to one, 
but it turns to a skew distribution when the binwidth is 

changed to two. Nonetheless, the boxplo
histograms show that the distribution is indeed 
symmetrical. This simple illustration shows that data 
interpretation can be misconstrued when an analyst is 
not aware of the arbitrariness of smoothing preference.

Binwidth = 1 Binwidth = 2

Figure 1. Two histograms depicting the same data set with 
different binwidths. 

Bubble Plot 

Histograms depict only one
however, when the data set is bivariate or multi
dimensional, smoothing becomes more complicated 
and difficult. When the sample size is very large, the 
dots in a bivariate scatterplot forms a big “cloud.” One 
way to simplify this over-plotted graph is the binning 
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approach (Carr, 1991), which follows and extends the 
same logic of grouping bars in a histogram.  The 
difference is that in a bivariate plot data points are 
grouped in bivariate intervals and larger symb
indicating more data points. This approach, which is 
known as the bubble plot, is available in several 
software packages, such as Mathematica (Wolfram, 
2013) and JMP (SAS Institute, 2015) (See Figure 2). 
Specifically, when data are dense in a particula
of the scatterplot, the bubble becomes bigger. 
Conversely, when the data are sparse, the bubble is 
smaller. One shortcoming of the bubble plot approach 
is that the scale of the bubble is arbitrary. For example, 
in one plot a circle with an area of 1cm
represent 10 observations but in another it might 
symbolize 100. 

Figure 2. Bubble plot. 

Density Contour Plot  

Another way to overcome over-plotting is the 
density contour plot. In this approach the density of 
data points is represented by both colors and contour 
lines. As shown in Figure 3, the large amount of data 
that concentrate on the centroid are depicted by 
colored contours. One advantage of this method is that 
noisy data are not hidden. Rather, the contours are 
superimposed on top of the raw data. However, this 
type of depiction is not intuitive and even a well
data analyst may not be able to discover the pattern or 
the trend in the data set. The obstacle is that if the 
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contour lines are not portrayed with additional labels, it 
is not informative at all (Boyd, 2015).

Figure 3. Density contour plot. 

Sunflower Plot 

The sunflower plot is another 
to over-plotting (Cleveland & McGill, 1984).  In a 
sunflower plot, the density of the data points is 
symbolized by a glyph. The more observations the spot 
contains, the more rays it emanates from the center. If 
there are more observations in a particular location, the 
glyph would look like a “sunflower” (see Figure 4). 
However, Schilling, and Watkins (1994) explained that 
when there is only one observation in a spot, the 
symbol is just a dot rather than a sunflower.  As a 
result, it is difficult to synthesize both dots and 
sunflowers into a coherent image. In addition, mentally 
translating the rays into frequency increases the 
cognitive load.  Further, when there are two 
observations only, a single line extends from that point. 
It may mislead the analyst to perceive that only one 
observation is there. 

Figure 4.  Sunflower plot. 
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Another way to simplify an over-plotted 
scattergram is median or mean smoothing. In this 
approach when the software algorithm encounters too 
many data, it can divide the data into several partitions 
along the x–axis and then calculate the median of y in 
each segment (Tukey, 1977). Hence, the analyst can 
look at the trend by visually connecting the medians. 
Mihalisin, Timlin, and Schwegler (1991) extended the 
preceding idea by using the mean rather than the 
median. However, using the median is recommended 
because the median is more resistant against extreme 
scores, especially when the distribution of a certain slice 
of the data set is highly skewed. It is the conviction of 
the authors that the median smoothing approach is 
more effective than all of the preceding methods. The 
meaning of median (middle point) is universally 
accepted while the scale of the bubble or the interval of 
contour lines is subject to the analyst’s preference. 
Hence, the pattern or the trend unveiled by median 
smoothing has a more objective ground. This will be 
demonstrated next. 

Methodology  

In this paper data visualization by median 
smoothing is illustrated by an example in item response 
theory (IRT), which is a powerful psychometric tool 
that is capable of estimating item attributes and person 
traits without the restriction of sample-dependence 
(Embretson & Reise, 2000). IRT assumes 
unidimensionality, meaning that a test or a survey used 
with these approaches should examine only a single 
latent trait of participants. In reality, many tests or 
surveys are multi-dimensional. If unidimensionality 
assumption is not satisfied, researchers can choose to 
remove unfit items, or to identify internal structure by 
conducting some exploratory factor analysis and 
confirmatory factor analysis. Then items belonging to 
different constructs can be scaled separately. However, 
critics charge that psychometric properties such as 
factor loadings are sample-dependent (Embretson & 
Reise, 2000; Wright & Mok, 2000), and thus structure 
produced from one study may be so unstable that it 
varies from sample to sample (Yan & Mok, 2012). To 
address these issues, multi-dimensional IRT (MIRT) 
was introduced as a synthesis of factor analysis and IRT 
(Adams, Wilson, & Wang, 1997; Kamata & Bauer, 
2008). It performs well when sub-scales within an 
instrument are strongly correlated with each other 
(Wang, Yao, Tsai, Wang, & Hsieh, 2006). 

MIRT aims to model latent covariance structures 
between multiple dimensions, and also to model these 
interactions (Hartig & Hohler, 2009). A classic example 
involves latent traits required for solving a math 
problem. When a math problem is presented in a 
formula or an equation (e.g. Solve y = 2x + 5; 2y = x + 
10), the required problem-solving ability is 
mathematical skill alone. However, if a math problem is 
explained in text (e.g. A car is running 65 miles per 
hour and the distance between the starting point and 
the destination is 485 miles. How long does it take for 
the car to reach the destination?), both math and 
reading skills are required. 

Several software packages are capable of running 
MIRT; these include Mplus, ITPRO, flexMIRT, 
EQSIRT, and SAS (SAS Institute, 2014). At first glance 
it is efficient to accomplish two tasks (identification of 
the factor structure and the item characteristics) 
concurrently. However, it is important to recognize that 
if problematic items are present in the data set, neither 
factor modeling nor IRT modeling can be successfully 
performed. This problem is especially severe when 
sample sizes are extremely large. Both factor analysis 
and IRT are very demanding in sample size. The 
recommended minimum sample sizes for factor 
analysis range from 150 to 500 (Comrey & Lee, 1992; 
Hutcheson & Sofroniou, 1999; MacCallum, Widaman, 
Preacher, & Hong, 1999; Mundfrom, Shaw, & Ke, 
2005). For IRT, suggested minimum sample sizes could 
be as large as 1,000 or 2,000 (Baker, 1992; Hulin, 
Lissak, & Drasgow, 1982). With such large sample 
sizes, calibrations and estimations may not be very 
accurate. At the same time, problematic items may be 
hidden in the large data set.  

There are many ways to detect and remove 
problematic items. In classical test theory, a typical 
approach is to examine the point-biserial correlation 
(item-total correlation) of each item. In IRT or Rasch 
modeling, it is common to examine discrimination 
parameters (Nikolausa et al., 2013) and infit or outfit 
Chi-square, in order to detect bad items (Lai, Cella, 
Chang, Bode, & Heinemann, 2003; Yu, 2013). This 
paper illustrates another way of identifying poor items - 
namely, data visualization of item-total correlation by 
median smoothing.  

Data Source 

As mentioned before, problematic items might be 
buried by an extremely large sample. To make the 
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illustration as realistic as possible, a large archival data 
set was downloaded from the website, “Personality 
Tests” (http://personality-testing.info/). Specifically, 
data collected using the Consideration of Future 
Consequences Scale (CFCS) was chosen. The objective of 
CFCS is to measure to what extent individuals take 
potential future outcomes into account while doing 
things at the present time and to what extent their 
current behaviors are influenced by imagined 
outcomes. There were five possible answers on the 
CFCS: extremely uncharacteristic (1), somewhat 
uncharacteristic (2), uncertain (3), somewhat 
characteristic (4), and extremely characteristic (5). 
Higher scores indicated a greater level of consideration 
of future consequences. Originally the CFCS was 
developed as a one-dimensional scale (Strathman, 
Gleicher, Boninger, & Edwards, 1994). However, 
recent factor analyses suggested that this scale carries 
two dimensions: consideration of the immediate and 
consideration of the future (Heveya et al., 2010; 
Joireman, Balliet, Sprott, Spangenberg, & Schultz, 2008; 
Joireman, Shaffer, Balliet, & Strathman, 2012; 
Joireman, Strathman, & Balliet, 2006). The original 
sample size of the full data set was 15,035. Two 
hundred and sixteen observations were removed, due 
to erroneous data or missing values. As a result, the 
remaining number of observations was 14,819. 

The original CFCS has 12 items and the revised 
version has 14. This data set is based on the original 
scale but in order to illustrate the importance of 
preliminary item selection the authors added two 
problematic items into the data set. As mentioned 
before, when sample sizes are too large, even random 
numbers may appear to form a pattern. Hence, if there 
are problematic items in the data set, they may not be 
detected. To demonstrate this problem, random 
number generating functions were used to insert two 
items (Q13 and Q14) into the scale. In Q13 the same 
probability (.2) was assigned to the five answer 
categories (1= extremely uncharacteristic, 2= somewhat 
uncharacteristic, 3= uncertain, 4= somewhat 
characteristic, 5= extremely characteristic). Therefore, 
this item had a uniform distribution. In Q14 a higher 
probability (.4) was assigned to the middle category (3), 
whereas lower probabilities were assigned to the other 
categories. Specifically, Category 2 and 4 have a 
probability of .2 to appear whereas Category 1 and 4 
have a probability of .1. As a result, a normal 
distribution was created.  

The uniform distribution of item Q13 was 
generated to mimic how the factors of ‘fatigue’ and 
‘boredom’ affect data accuracy. If a survey is too long 
or participants perceive its items as irrelevant, 
participants might randomly select one of the five 
categories, rather than reading the questions carefully. 
These respondents might not choose the same answers 
(e.g. all ‘A’s or all ‘B’s) throughout the survey, in order 
to avoid detection of their feigned or mindless 
responses. As a result, each category would have an 
equal chance of being selected.  

The normal distribution of item Q14 was 
generated in order to simulate problems with poorly 
worded and/or misfit items. Even if an item is 
intended to fit into a construct under study, a poorly 
worded item may confuse and mislead participants. For 
example, in a survey pertaining to the attitude towards 
science learning the following question could be asked: 
“Do you think that fundamental physics is difficult?” 
Fundamental physics is a study of the basic structure 
and universal properties of nature, such as particles and 
quantum fields. While some respondents may interpret 
this question correctly, some might think that it refers 
to elementary physics. Consequently, its response 
pattern might still be a normal curve, but it would be 
disconnected from all other items. In the case of a 
misfit item there would be no vagueness in the 
wording, but the item would not be strongly related to 
the construct under investigation. For example, in a 
survey about mental wellbeing the following question 
could be asked: “Do you consider yourself physically 
healthy?” Responses to this question would not 
indicate a significant association between happiness and 
physical health. In this case the responses would still be 
normally distributed but the item would be misfit to the 
focal construct.  

Results 

Exploratory Factor Analysis The original data 
set yielded a high Cronbach’s Alpha (.8717); no item(s) 
needed to be excluded in order to substantively 
improve the scale’s reliability. In other words, the 
response pattern to all of the questions was internally 
consistent (see Figure 5). 
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Figure 5. Cronbach’s alpha of the original 12 items.
 

Concurring with the literature, exploratory factor 
analysis (EFA) suggested a 2-factor solution based on 
the scree plot (see Figure 6) and the factor structure 
depicted in the loading plot (see Figure 7). 

Figure 6. Eigenvalue and scree plot of the ori

 

As shown in Figure 7, questions 1, 2, 6, 7, and 8 
were loaded in Factor 2, while all others were loaded in 
Factor 1. The loading plot also shows that the two 
clusters of vectors are apart from each other, implying 
their construct distinctness.  
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 However, the clear factor structure was disrupted 
by the introduction of the two problematic items (Q13 
and Q14). Even though the so
items were nothing more than random numbers, 
reliability analysis based on Cronbach’s Alpha did not 
detect a problem. If Q13 were removed, the Alpha 
would increase from .8303 to .8539 (see Figure 8). If 
Q14 were dropped, the Alpha would increase from 
.8303 to .8467. Most people would not be alerted
trivial difference as small as .0236 or .0164.

Figure 8. Cronbach’s Alpha of 14 items with random 
data. 
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With the presence of two problematic items, EFA 
suggested a three-factor solution (see Figure 9); this 
resulted in confusion regarding the factor structure.

Figure 9. Eigenvalue and Scree plot of 14 items.
 

One may suspect that Q13 and Q14 do not belong 
to the original two factors, and thus they form a third 
factor. However, this is not the case. Figure 6 shows 
that Q13 and Q14 were not loaded onto any factor. 
Even if the loading value was increased to .38
before, Q9 became a one-item factor (Figure 10). In 
short, the two undetected and misfit items damaged the 
factor structure.  

Figure 10. Factor loadings and loading plot of 14 items 
for a three-factor solution 

 

When a two-factor solution was imposed on the 
data, it is obvious that Q13 and Q14 do not belong to 
any construct (see Figure 11). 
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Confirmatory Factor Analysis 

Interestingly, with such a large sample size the 
fitness indices of confirmatory factor analysis (CFA)
also fail to alert the analyst about the existe
problematic items. CFA was run with SAS 9.4 (SAS 
Institute, 2014) on the original 12 items of the CFCS 
and results supported the proposed two
structure (see Table 1). The Adjusted Goodness of Fit 
Index (AGFI) results (.94) support the propose
factor structure, since AGFI values are considered 
satisfactory when greater than .90 (Hooper, Coughlan, 
& Mullen, 2008). Steiger (2007) suggest
Mean Square Error of Approximation (RMSEA) is 
acceptable when less than .07, and Hu and Bentler 
(1999) stated that the Standardized Root Mean Square 
Residual (SMSR) is sufficient when less than .08. Both 
the RMSEA (.06) and SMSR (.03) resul
these suggested thresholds. Together, these fit indices 
suggest that the two-factor solution is a better fit than 
the original 12 item CFCS.  

Table 1. CFA results for original 12 items

AGFI  
Parsimonious GFI 
RMSEA Estimate 
SRMR 
Akaike Information Criterion 

 

In order to assess the impact of the two 
problematic items (Q13 and Q14) on the factor 
structure of the CFCS, a separate CFA was run on the 
scale, which included questions 13 and 14 (see Table 2). 
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In order to assess the impact of the two 
problematic items (Q13 and Q14) on the factor 
structure of the CFCS, a separate CFA was run on the 
scale, which included questions 13 and 14 (see Table 2). 
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All results from the AGFI (.96), RMSEA (.05), and 
SMSR (.03) indices meet the cut-off criteria. Therefore, 
the proposed two-factor structure for the 14
would be considered acceptable. The Akaike 
Information Criterion (AIC) result for the original 12
item scale (3126.51) did not greatly differ from the A
of the 14-item scale (3152.86). Together, these results 
show that CFA failed to detect the problematic items 
(Q13 and Q14). 

Table 2. CFA results on 14-item scale including Q13 
and Q14 

AGFI 
Parsimonious GFI 
RMSEA Estimate 
SRMR 
Akaike Information Criterion 

 

As mentioned previously, MIRT is a synthesis of 
factor analysis and IRT. Nonetheless, when 
problematic items exist in the data set Cronbach’s 
Alpha, EFA, or CFA may fail to detect them initially. 
This problem would carry over to MIRT even though 
the polychoric correlation matrix was utilized in SAS. 
The polychoric correlation matrix is especially useful 
for analyzing items on self-report surveys, such as 
personality inventories that often use rating scales with 
a small number of response categories (e.g. 5
Likert scale). Pearson’s r works best with a high degree 
of variability. When the distribution of the item 
responses is narrow due to limited options, the 
between-item relationships tend to be attenuated in the 
Pearson’s correlation matrix. Factor analysis based on 
the polychoric matrix is supposed to reduce these types 
of statistical artifacts (Lee, Poom & Bentler, 1995; 
Tello, Moscoso, García, & Chaves, 2006). However, 
MIRT still suggests a 3-factor solution as EFA did 
before (see Figure 12 and Table 3).  

Figure 12. Scree plot from PROC IRT for CSCF items.
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Table 3 is the output of the interpret parameter 
estimates of all 14 items yielded by PROC IRT. All p
values are less than .0001, and the patterns of the 
slopes and standard errors of all items
viewing the table alone, even experienced researchers 
may not be able to tell that Q13 and Q14 contain 
messy data. 

Table 3. Interpret parameter estimates of all 14 
items yielded by PROC IRT 

Item Parameter Estimate

Q1 Intercept1 5.16127 

 Intercept2 2.88533 

 Intercept3 2.02889 

 Intercept4 -1.88742

Q2 Intercept1 2.63126 

 Intercept2 1.09539 

 Intercept3 0.20938 

 Intercept4 -2.20241

R3 Intercept1 3.95101 

 Intercept2 0.91459 

 Intercept3 0.16281 

 Intercept4 -2.58373

R4 Intercept1 3.62955 

 Intercept2 0.86535 

 Intercept3 0.10111 

 Intercept4 -2.36039

R5 Intercept1 1.43904 

 Intercept2 -0.68285

 Intercept3 -1.32029

 Intercept4 -2.89727

Q6 Intercept1 3.41807 

 Intercept2 1.55048 

 Intercept3 0.86638 

 Intercept4 -1.3699 

Q7 Intercept1 4.2757 

 Intercept2 2.42502 

 Intercept3 1.69437 

 Intercept4 -0.96843

Q8 Intercept1 3.66918 

 Intercept2 1.80879 

 Intercept3 0.3596 

 Intercept4 -1.75766

R9 Intercept1 3.49884 

 Intercept2 1.13264 

 Intercept3 0.45408 

 Intercept4 -1.7882 

R10 Intercept1 3.84987 

 Intercept2 1.28205 

 Intercept3 0.53106 

 Intercept4 -2.05369

R11 Intercept1 4.67062 

 Intercept2 1.29876 

 Intercept3 0.4193 

 Intercept4 -2.79894

R12 Intercept1 2.85794 

 Intercept2 0.63506 

 Intercept3 -0.58329

 Intercept4 -2.63574

Q13 Intercept1 1.3547 
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Table 3 is the output of the interpret parameter 
estimates of all 14 items yielded by PROC IRT. All p-
values are less than .0001, and the patterns of the 
slopes and standard errors of all items look alike. By 
viewing the table alone, even experienced researchers 
may not be able to tell that Q13 and Q14 contain 

Interpret parameter estimates of all 14 

Estimate Std. Error p 

 0.10362 <.0001 

 0.06246 <.0001 

 0.04878 <.0001 

1.88742 0.04569 <.0001 

 0.0393 <.0001 

 0.02646 <.0001 

 0.02314 <.0001 

2.20241 0.0345 <.0001 

 0.05552 <.0001 

 0.02793 <.0001 

 0.02581 <.0001 

2.58373 0.04005 <.0001 

 0.0549 <.0001 

 0.02733 <.0001 

 0.0249 <.0001 

2.36039 0.03969 <.0001 

 0.02273 <.0001 

0.68285 0.01947 <.0001 

1.32029 0.02192 <.0001 

2.89727 0.035 <.0001 

 0.04184 <.0001 

 0.02507 <.0001 

 0.02194 <.0001 

 0.02412 <.0001 

0.07396 <.0001 

 0.04563 <.0001 

 0.03612 <.0001 

0.96843 0.02771 <.0001 

 0.04637 <.0001 

 0.02653 <.0001 

0.02015 <.0001 

1.75766 0.02598 <.0001 

 0.05493 <.0001 

 0.02821 <.0001 

 0.0242 <.0001 

 0.03381 <.0001 

 0.05021 <.0001 

 0.02656 <.0001 

 0.02349 <.0001 

2.05369 0.03148 <.0001 

 0.06848 <.0001 

 0.03184 <.0001 

0.02788 <.0001 

2.79894 0.04531 <.0001 

 0.03429 <.0001 

 0.01991 <.0001 

0.58329 0.01981 <.0001 

2.63574 0.03177 <.0001 

0.02035 <.0001 
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 Intercept2 0.40542 0.01677 

 Intercept3 -0.41711 0.01679 

 Intercept4 -1.36453 0.02041 

Q14 Intercept1 2.19625 0.02737 

 Intercept2 0.85683 0.01796 

 Intercept3 -0.82922 0.01786 

 Intercept4 -2.19915 0.02741 

 

Detection by Data Visualization 

When a sample size is small, one may be able to 
detect problematic items by viewing a scatterplot of 
total scores (the average of all items except the item 
under investigation), along with the scores for each 
item. When a sample size is large, however, data points 
jam together. This makes pattern recognition difficult 
and sometimes even impossible (see Figure 13). This 
issue is known as over-plotting. 

Figure 13. Over-plotting: Patterns are hidden in the 
scatterplot when data points are displayed. 

 

Method 

The remedy to this problem is ‘median smoothing’ 
– that is, changing the display of individual data points 
to summarized box plots (Tukey, 1977; Yu & Behrens, 
1995; Yu, 2014). Figure 14 displays usage of this 
technique, indicating the relationship between Q1 and 
the total without Q1. The boxplots in this figure 
summarize totals at different levels of Q1 scores. This 
figure clearly indicates that the medians and boxes for 
Q1 indicate an upward trend; this trend is consistent 
with the total response pattern in Q1-Q12. Figure 15 
indicates another example of this response pattern.
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jam together. This makes pattern recognition difficult 
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are hidden in the 

The remedy to this problem is ‘median smoothing’ 
that is, changing the display of individual data points 

to summarized box plots (Tukey, 1977; Yu & Behrens, 
displays usage of this 

technique, indicating the relationship between Q1 and 
the total without Q1. The boxplots in this figure 
summarize totals at different levels of Q1 scores. This 
figure clearly indicates that the medians and boxes for 

pward trend; this trend is consistent 
Q12. Figure 15 

indicates another example of this response pattern. 

Figure 14. Median smoothing of total without Q1 by 
Q1 

Figure 15. Median smoothing of total without Q2 by 
Q2 

 

Figures 16 and 17 indicate that the preceding trend 
is absent in both Q13 and Q14. In short, this graphical 
inspection enables researchers to spot problematic 
items that Cronbach’s Alpha and factor analysis failed 
to detect. 
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Figure 16. Median smoothing of total without Q13 by 
Q13 

 

Figure 17. Median smoothing of total without Q13 by 
Q14 

 

Conclusion 

In this paper, we illustrated how data visualization 
can be utilized to identify errors prior to modeling. We 
used MIRT as an example, due to the fact that IRT is 
inherently a visual procedure, meaning that 
interpretation of it necessitates various graphs 
item-person map, item characteristic curve, item 
information function curve, test information function 
curve, and many others). However, very often data 
visualization of IRT is performed by psychometricians 
after modeling instead of being used as a d
prior to parameter estimation. It is important to 
mention that the principle of data visualization is in 
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In this paper, we illustrated how data visualization 
can be utilized to identify errors prior to modeling. We 
used MIRT as an example, due to the fact that IRT is 
inherently a visual procedure, meaning that 
interpretation of it necessitates various graphs (i.e. 

person map, item characteristic curve, item 
information function curve, test information function 
curve, and many others). However, very often data 
visualization of IRT is performed by psychometricians 
after modeling instead of being used as a diagnosis tool 
prior to parameter estimation. It is important to 
mention that the principle of data visualization is in 

alignment with the philosophy of exploratory data 
analysis, which emphasizes examining the data 
structure, checking assumptions, spotting
fixing errors before committing the data to 
confirmatory data analysis (Behrens & Yu, 2003; 
Turkey, 1977; Yu, 2010). The preceding example 
illustrates that sometimes even random noise could be 
mis-identified as structure. Despite the versati
MIRT, users who work with large data sets are advised 
against jumping into usage of MIRT without having 
first conducted a preliminary item removal. While 
reliability analysis may fail to identify problematic items, 
data visualization (such as media
effective for unveiling hidden problems.
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alignment with the philosophy of exploratory data 
analysis, which emphasizes examining the data 
structure, checking assumptions, spotting outliers, and 
fixing errors before committing the data to 
confirmatory data analysis (Behrens & Yu, 2003; 
Turkey, 1977; Yu, 2010). The preceding example 
illustrates that sometimes even random noise could be 

identified as structure. Despite the versatility of 
MIRT, users who work with large data sets are advised 
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first conducted a preliminary item removal. While 
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