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Abstract: For the personalization of polygenic/omics-based health care, the purpose of this study 

was to examine the gene–environment interactions and predictors of colorectal cancer (CRC) by 

including five key genes in the one-carbon metabolism pathways. In this proof-of-concept study, 

we included a total of 54 families and 108 participants, 54 CRC cases and 54 matched family friends 

representing four major racial ethnic groups in southern California (White, Asian, Hispanics, and 

Black). We used three phases of data analytics, including exploratory, family-based analyses 

adjusting for the dependence within the family for sharing genetic heritage, the ensemble method, 

and generalized regression models for predictive modeling with a machine learning validation 

procedure to validate the results for enhanced prediction and reproducibility. The results revealed 

that despite the family members sharing genetic heritage, the CRC group had greater combined 

gene polymorphism rates than the family controls (p < 0.05), on MTHFR C677T, MTR A2756G, 

MTRR A66G, and DHFR 19 bp except MTHFR A1298C. Four racial groups presented different 

polymorphism rates for four genes (all p < 0.05) except MTHFR A1298C. Following the ensemble 

method, the most influential factors were identified, and the best predictive models were generated 

by using the generalized regression models, with Akaike’s information criterion and leave-one-out 

cross validation methods. Body mass index (BMI) and gender were consistent predictors of CRC for 

both models when individual genes versus total polymorphism counts were used, and alcohol use 

was interactive with BMI status. Body mass index status was also interactive with both gender and 

MTHFR C677T gene polymorphism, and the exposure to environmental pollutants was an 

additional predictor. These results point to the important roles of environmental and modifiable 

factors in relation to gene–environment interactions in the prevention of CRC.  
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1. Introduction 

Colorectal cancer (CRC) is a cancer that is preventable by modifying environmental and lifestyle 

interventions for human ecological development [1–6]. Well-defined environmental interventions 

may improve cancer treatment effects, prevent cancer progression and increase survival through 

epigenetic mechanisms with gene environment interactions [1,4,5]. Approximately 70% of CRC is 

related to environmental and lifestyle factors, while about 30% of CRC risk is inheritable with 5% 

being highly aggressive in cancer progression for metastatic penetrance [7–9]. Hence, the most 
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common risks for CRC are preventable by cultivating healthy lifestyles and environments to help 

keep the human epigenetic environment free from cancers.  

For the prevention of various chronic health conditions, the most published genes related to the 

risk for various racial–ethnic groups is the methylenetetrahydrofolate reductase (MTHFR) gene, 

identified through the genome application framework [10–14]. As the MTHFR enzyme is encoded by 

the MTHFR gene for homocysteine remethylation to methionine, mutations in the MTHFR gene are 

associated with MTHFR enzyme deficiency in humans [15]. Studies have emerged to document the 

effects of low folate levels and increased CRC risk [12–14]. The mechanism of low folate levels and 

CRC as well as a plethora of major cardiovascular and neurodevelopmental diseases have been 

associated with the toxic effect of hyperhomocysteinmia [10,12–14]. These toxic effects are mediated 

through one-carbon metabolism enzyme pathways, which are critical to basic biological processes 

including deoxyribonucleic acid (DNA) and protein methylation, and DNA replication and 

mutations. MTHFR gene is listed as a prototype gene for the application of prevention studies for 

CRC by the experts at the National Human Genome Research Institute (NHGRI) [16,17]. We 

examined two loci of MTHFR gene polymorphisms, C677T (rs1801133) and A1298C (rs1801131), both 

are associated with MTHFR enzymatic deficiency resulting in increased homocysteine concentrations 

[18,19]. The best-characterized MTHFR gene polymorphism is a common missense/loss of function 

mutation of 677C→T, resulting in a thermolabile enzyme variant that has a reduced catalytic activity 

of 35% for 677 CT and 70% for 677 TT variants, and of nucleotide 1298A→C, resulting in 15% 

decreased MTHFR activity for 1298 AC and 30% for 1298 CC variants [20,21]. We also investigated 

three additional genes in the folate-methylation pathways: dihydrofolate reductase (DHFR) 19 base 

pair (19bp) (rs70991108) which converts folic acid into methylenetetrahydrofolate (MTHF) as usable 

folate form [22,23], methionine synthase (MTR A2756G, rs1805087) in the methylation cycle, and 

methionine synthase reductase (MTRR A66G, rs1801394) which converts/recycles homocysteine back 

to usable MTR for the methylation cycle [24–27]. Together, these five genes play critical roles in the 

methylation pathways for biological processes in sustaining human health, and polymorphism 

mutations of these genes would lead to missense and lost functions for the methylation process. 

Sufficient nutrients related to these genes include folate (vitamin B9) and vitamin B12, as methyl 

donors, play an integral role in the phenotypic expression of MTHFR and related gene mutations in 

the methylation pathways [18–21]. 

Healthy lifestyles and living environments have a major effect on the development of CRC, 

inducing gene expression changes in the key epigenetics regulatory pathways and affect metabolic 

processes in colon mucosa [7,10,24]. Lifestyle may play a mediating role with ages in the lifespan for 

the development of CRC, based on studies that involved the examination of family members 

developing hereditary CRC [7–9]. Thus, studies of gene–environment interactions in families are 

significant in providing potential insights for developing prevention strategies affecting cancer 

prevention. Additionally, recent studies including meta-predictions that examined gene–

environment interactions consistently presented that increased air pollution is associated with 

increased gene polymorphisms across various disease conditions, especially for MTHFR C677T 

polymorphisms and genes in the methylation pathways [28–35]. Therefore, the purpose of this study 

was to examine the key gene–environmental factors affecting the risk associations with CRC, and the 

interactions among these factors affecting the risks of CRC. In this study, we used three phases of 

data analytics, including data visualization and identification, data reduction, and model building to 

validate the predictive models. These analytics included the ensemble method [36–39], as well as data 

exploration and generalized regression models for predictive modeling to cross-validate the  

results [40–43]. 

2. Results  

We used three phases of data analytics, including exploratory family-based analyses adjusting 

for dependence within the family for sharing genetic heritage [44]. In the first stage of data 

visualization and understanding, we used bootstrap forest, also known as bagging (i.e. bootstrap 



J. Pers. Med. 2018, 8, 10  3 of 21 

 

 

aggregating), which is one of the most popular ensemble methods [37–40]. The ensemble methods 

are based on the logic of resampling, which is a well-known remedy for small-sample studies. For 

example, while developing the bootstrapping method in 1983, Diaconis and Efron had only 15 

observations [45]. In resampling, the sample is treated as a virtual population and then different 

subsets are randomly drawn from the sample for multiple analyses. Bias can be observed and 

corrected by such repeated analyses of random subsets [46]. In the second stage, our strategy was to 

identify the most influential predictors within three categories of genetic factors, 

demographic/environmental factors, and lifestyle factors for dimension reduction. We also used 

generalized regression models for predictive modeling with machine learning validation  

procedures [47], including significant variables and variables with significant interactions identified 

through the data visualization of bi-variate interaction profilers, to validate the results for enhanced 

prediction and reproducibility.  

2.1. Characteristics of Study Participants 

We recruited a total of 54 families, 108 participants, 54 CRC cases and 54 matched family 

controls. We attempted to match the groups on various demographic factors for this family-based 

study. The family control group had a younger age because many of the available family members 

were the offspring of the cancer patients. Table 1 presents the comparisons of key demographic [48], 

lifestyle health metrics [49,50], and environmental factors [51,52] between the two groups. Parameters 

that were significantly different between the control and cancer groups included age, gender, and 

exposure to pollutants (all p < 0.05), adjusted for associated blood-related family members [44]. As 

this was a proof-of-concept study, additional adjustment of p-values for multiple testing was not used 

for the exploratory analyses of related factors.  

Other noteworthy factors of importance included sleepiness during day time; cancer patients 

reported an average of 0.4 more sleepy days than the family controls. Physical inactivity was 

associated with an elevated risk of cancer (an average of 11 minutes less active per week in cancer 

patients than the control group). However, most people were sedentary, only two (3.7%) of the 

control group and one (1.9%) of the cancer group participants met the recommended 150 minutes or 

longer physical activity in this study. Additionally, using alcohol was associated with a higher risk 

of cancer (14.9% more use in the cancer than the control group).  

These demographic/lifestyle/environmental factors were compared across the racial–ethnic 

subgroups (Table 2). The results showed that the Hispanic and the Black samples had higher body 

mass index (BMI) with greater than 50% of the Hispanic and the Black samples being obese than the 

White (29.4%) and the Asian (2.4%) samples (p < 0.0001). Additionally, there were more Whites than 

the other three racial groups who drank alcohol (p = 0.0001).  

Between the two groups, the total gene polymorphism rates of the five chosen genes in the folate 

methylation pathways ranged from zero to six, with a possible maximum score of 10 if each of the 

five genes had homozygous polymorphisms. MTHFR enzyme deficiency was calculated by 

combining the loss of enzyme functions from MTHFR C677T (loss of 35% for each of the two T 

polymorphic alleles) and MTHFR A1298C (a loss of 15% for each of the two C polymorphic alleles), 

a composite score of both MTHFR C677T and MTHFR A1298C polymorphisms [15]. To decrease the 

degrees of freedom and increase the power in the statistical testing, the total polymorphism score 

was recoded into two groups using the median split between <4 and >4. Increased polymorphism of 

the five genes combined was associated with an increased risk of CRC (p < 0.05), while no significant 

difference between the control and cancer groups was noted for each gene alone and the composite 

score on the MTHFR enzyme deficiency (Table 3). There was a general trend that the cancer group 

had increased polymorphisms and lesser percentage of wild type alleles for all genes including 

MTHFR C677T, MTR A2756G, MTRR A66G, and DHFR 19bp, except for MTHFR A1298C, where the 

control group had increased polymorphisms and lower wild type alleles compared to the CRC group, 

which had decreased polymorphisms and higher wild type alleles.  
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Table 1. Comparison of demographic/environmental factors between family control and cancer 

groups. 

Factors  
Control 

(n = 54) 

Cancer 

(n = 54) 
p-value 

Gender 
Male 

Female 

14 (25.9%) 

40 (74.1%) 

25 (46.3%) 

29 (53.7%) 
0.0275 

Marital Status Married 33 (61.1%) 35 (64.8%) 0.1739 

Health Status Good/Excellent 40 (74.1%) 39 (72.2%) 0.6878 

Age 
Years (mean ± SD) 

(range) 

47.04 ± 17.16 

(18–80) 

60.98 ± 10.86 

(37– 79) 
<0.0001 

Body Mass Index 

Lean (<20) 

Normal (20–25) 

Overweight (25.1–29.9) 

Obese (>30) 

mean ± SD 

(range) 

2 (3.7%) 

22 (40.7%) 

18 (33.3%) 

12 (22.2%) 

27.8 ± 7.2 

(17.2–49.1) 

2 (3.7%) 

18 (33.3%) 

18 (33.3%) 

16 (29.6%) 

27.4 ± 5.9 

(19.0–54.0) 

0.8082 

Vegetable Intake/Day >3 servings 15 (27.8%) 12 (22.2%) 0.6779 

Fruit Intake/Day >2 servings 27 (50.0%) 24 (44.4%) 0.7345 

Whole Grain Intake/Day >3 servings 8 (14.8%) 6 (11.1%) 0.7821 

Liquid Intake/Day 

>8 cups 

mean ± SD 

(range) 

16 (29.6%) 

5.7 ± 1.6 

(4–8) 

15 (27.8%) 

5.6 ± 1.6 

(4–8) 

0.9645 

Sleepy Days/Week 

 

0 days 

mean ± SD 

(range) 

10 (19.6%) 

2.8 ± 2.4 

(0–7) 

7 (13.0%) 

3.2 ± 2.3 

(0–7) 

0.7355 

Physical Activity 

 

 

Minutes mean ± SD 

(range) 

>150 minutes per week 

48.1 ± 53.9 

(0–360) 

2 (3.7%) 

37.4 ± 41.8 

(0–270) 

1 (1.9%) 

0.2515 

Tobacco Use Yes 5 (9.3%) 4 (7.4%) 0.7277 

Alcohol Use Yes 24 (44.4%) 32 (59.3%) 0.1478 

Stress (0–10) 

<5 

mean ± SD 

(range) 

32 (59.3%) 

4 ± 2.8 

(0–10) 

31 (57.4%) 

4.1 ± 3.0 

(0–10) 

0.6671 

Nervous or Anxious Not at all 26 (48.1%) 25 (46.3%) 0.9971 

Depressed Not at all 36 (66.7%) 34 (63.0%) 0.3581 

Cognitive Capacity Good/Excellent 46 (85.2%) 45 (83.3%) 0.7418 

Functional Capacity Good/Excellent 49 (90.7%) 45 (83.3%) 0.7027 

Role Functions Good/Excellent 49 (90.7%) 44 (81.5%) 0.4913 

Spiritual Support Good/Excellent 39 (72.2%) 45 (83.3%) 0.2074 

Convenience to Healthcare Good/Excellent 50 (92.6%) 52 (96.3%) 0.2293 

Health Insurance Coverage Good/Excellent 44 (81.5%) 47 (87.0%) 0.1330 

Air Quality in Community Good/Excellent 34 (63.0%) 29 (53.7%) 0.7790 

Air Quality at Home Good/Excellent 12 (22.2%) 13 (24.1%) 0.6859 

Tobacco Use by Family 

Members 
Yes 5 (9.3%) 6 (11.1%) 0.7005 

Exposure to Pollutants Yes 5 (9.3%) 14 (25.9%) 0.0202 

Race 

 

White 

Asian 

Hispanic 

African 

16 (29.6%) 

23 (42.6%) 

11 (20.4%) 

4 (7.4%) 

18 (33.3%) 

19 (35.2%) 

12 (22.2%) 

5 (9.3%) 

0.8842 

The statistically significant values have been highlighted in red. SD: Standard deviation.  
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Table 2. Comparison of demographic, lifestyle, and environmental factors across racial groups. 

Factors  
White 

(n = 34) 

Asian 

(n = 42) 

Hispanic 

(n = 23) 

African 

(n = 9) 

p-

value 

Gender 
Male 

Female 

15 (44.1%) 

19 (55.9%) 

13 (31.0%) 

29 (69.0%) 

8 (34.8%) 

15 (65.2%) 

3 (33.3%) 

6 (66.7%) 
0.6876 

Marital Status Married 24 (70.6%) 31 (73.8%) 9 (39.1%) 4 (44.4%) 0.0658 

Health Status Good/Excellent 27 (79.4%) 30 (71.4%) 16 (69.6%) 6 (66.7%) 0.3674 

Age 
Years (mean ± 

SD) (range) 

57.53 ± 2.73 

(21–80) 

53.55 ± 2.45 

(19–79) 

49.78 ± 3.31 

(18–75) 

53.67 ± 5.30 

(19–77) 
0.3478 

Body Mass Index 

Lean (< 20) 

Normal (20–25) 

Overweight 

(25.1–29.9) 

Obese (> 30) 

mean ± SD 

(range) 

1 (2.9%) 

8 (23.5%) 

15 (44.1%) 

 

10 (29.4%) 

28.7 ± 6.5 

(19–50.7) 

3 (7.1%) 

27 (64.3%) 

11 (26.2%) 

 

1 (2.4%) 

23.8 ± 2.9 

(17.2–30) 

0 (0%) 

4 (17.4%) 

7 (30.4%) 

 

12 (52.2%) 

30.8 ± 6.9 

(20.6–46) 

0 (0%) 

1 (11.1%) 

3 (33.3%) 

 

5 (55.6%) 

32.7 ± 9.3 

(24.2–49.1) 

<0.0001 

Vegetable Intake/Day >3 servings 11 (32.4%) 13 (31.0%) 2 (8.7%) 1 (11.1%) 0.1414 

Fruit Intake/Day >2 servings 15 (44.1%) 22 (52.4%) 10 (43.5%) 4 (44.4%) 0.3406 

Whole Grain 

Intake/Day 
>3 servings 7 (20.6%) 4 (9.5%) 2 (8.7%) 1 (11.1%) 0.3985 

Liquid Intake/Day >8 cups 10 (29.4%) 12 (28.6%) 7 (30.4%) 2 (22.2%) 0.4805 

Sleepy Days/Week 0 days 7 (20.6%) 7 (16.7%) 2 (8.7%) 1 (11.1%) 0.8448 

Physical 

Activity/Week 

mean ± SD 

(range) 

>150 minutes 

39.3±35.2 

(0–180) 

1 (2.9%) 

43.9±54.5 

(0–360) 

1 (2.4%) 

54.1±59.2 

(0–270) 

1 (4.3%) 

21.7±17.7 

(0–50) 

0 (0%) 

 

0.1223 

Tobacco Use Yes 1 (2.9%) 4 (9.5%) 3 (13.0%) 1 (11.1%) 0.5457 

Alcohol Use Yes 27 (79.4%) 13 (31.0%) 14 (33.3%) 2 (22.2%) 0.0001 

Stress (0–10) <5 15 (44.1%) 28 (66.7%) 14 (33.3%) 6 (66.7%) 0.1253 

Nervous or Anxious Not at all 14 (41.2%) 20 (47.6%) 11 (47.8%) 6 (66.7%) 0.4130 

Depressed Not at all 22 (64.7%) 28 (66.7%) 13 (56.5%) 7 (77.8%) 0.8608 

Cognitive Capacity Good/Excellent 31 (91.2%) 34 (81.0%) 19 (82.6%) 7 (77.8%) 0.3889 

Functional Capacity Good/Excellent 27 (79.4%) 40 (95.2%) 19 (82.6%) 8 (88.9%) 0.3398 

Role Functions Good/Excellent 31 (91.2%) 36 (85.7%) 18 (78.3%) 8 (88.9%) 0.4095 

Spiritual Support Good/Excellent 27 (79.4%) 34 (81.0%) 17 (73.9%) 6 (66.7%) 0.5334 

Convenience to 

Healthcare 
Good/Excellent 34 (100%) 37 (88.1%) 23 (100%) 8 (88.9%) 0.2321 

Health Insurance 

Coverage 
Good/Excellent 32 (94.1%) 30 (71.4%) 22 (95.7%) 7 (77.8%) 0.1175 

Air Quality in 

Community 
Good/Excellent 17 (50.0%) 28 (66.7%) 11 (47.8%) 7 (77.8%) 0.4525 

Air Quality at Home Good/Excellent 7 (20.6%) 10 (23.8%) 6 (26.1%) 2 (22.2%) 0.2545 

Tobacco Use in 

Family 
Yes 2 (5.9%) 4 (9.5%) 4 (17.4%) 1 (11.1%) 0.5316 

Exposure to Pollution Yes 7 (20.6%) 5 (11.9%) 4 (17.4%) 3 (33.3%) 0.4659 

The statistically significant values have been highlighted in red.   
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Table 3. Comparison of gene polymorphisms between family control and cancer groups. 

Genes  
Control 

(n = 54) 

Cancer 

(n = 54) 
p-value 

MTHFR 677 

0 (CC) 

1 (CT) 

2 (TT) 

28 (51.9%) 

21 (38.9%) 

5 (9.3%) 

23 (42.6%) 

25 (46.3%) 

6 (11.1%) 

0.6285 

MTHFR 1298 

0 (AA) 

1 (AC) 

2 (CC) 

32 (59.2%) 

15 (27.8%) 

7 (13.0%) 

34 (63.0%) 

15 (27.8%) 

5 (9.2%) 

0.8212 

MTR 2756 

0 (AA) 

1 (AG) 

2 (GG) 

39 (72.2%) 

12 (22.2%) 

3 (5.6%) 

36 (66.7%) 

17 (31.5%) 

1 (1.8%) 

0.3712 

MTRR 66 

0 (AA) 

1 (AG) 

2 (GG) 

28 (52.4%) 

18 (33.6%) 

7 (13.0%) 

19 (35.6%) 

25 (46.8%) 

10 (18.5%) 

0.1842 

DHFR 19 bp 

Del/Del 

Ins/Del 

Ins/Ins 

20 (37.0%) 

17 (31.5%) 

17 (31.5%) 

13 (24.1%) 

25 (46.3%) 

16 (29.6%) 

0.2188 

Total Polymorphism (0–10) 

 

>4 

mean ± SD 

(range) 

16 (29.6%) 

3.1 ± 1.3 

(0–6) 

27 (50.0%) 

3.3 ± 1.4 

(1–5) 

0.0306 

0.0819 

The statistically significant values have been highlighted in red. Ins: Insertion; Del: Deletion.  

There were significant differences in the presentation of all five gene polymorphisms across the 

four racial–ethnic groups (all p < 0.05, Table 4). For comparison among these racial groups, in general, 

the Asian and the White samples had more polymorphisms on these five genes combined than the 

Hispanic and the Black samples. For comparisons among the groups of the individual genes, the 

Hispanic and the White samples had higher MTHFR enzyme deficiencies (average of 36%) resulting 

from polymorphisms of MTHFR C677T and MTHFR A1298C compared to the Asian (27%) and the 

Black (0%) subgroups. The Asian (88%) and the Black (78%) samples had higher DHFR 19bp deletions 

than the White (59%) and the Hispanic (48%) samples. The White (79%) and the Black (67%) samples 

had higher MTRR A66G polymorphisms than the Asian (52%) and the Hispanic (26%) samples. 

Furthermore, the Black (56%) and the White (41%) samples had higher levels of polymorphisms on 

the MTR A2756G gene than the Asian (29%) and the Hispanic (9%) subgroups.  

The distribution of the polymorphisms on these five genes for the control and cancer groups and 

the four racial–ethnic subgroups are further presented in Table 5. We checked the Hardy–Weinberg 

equilibrium (HWE) analysis of these five genes to assess the distribution equilibrium of the 

evolutionary mechanisms in population genetics [53], associated with factors such as population 

migration or stratification and disease association. MTHFR A1298C and DHFR 19bp had significant 

(both p < 0.05) HWE with disequilibrium, while this was not significant for each of the racial–ethnic 

subgroups for these two genes. We further checked the distribution of alleles for population-based 

allele frequencies across the ethnic groups to provide the reference distribution in comparison to our 

findings (Table 5, http://useast.ensembl.org/index.html;https://www.cdc.gov/genomics/ 

population/genvar/frequencies/mthfr.htm). 
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Table 4. Comparison of gene polymorphisms across racial groups. 

Genes  
White 

(n = 34) 

Asian 

(n = 42) 

Hispanic 

(n = 23) 

African 

(n = 9) 

p-

value 

MTHFR 677 

0 (CC) 

1 (CT) 

2 (TT) 

3 (38.2%) 

16 (47.1%) 

5 (14.7%) 

21 (50.0%) 

17 (40.5%) 

4 (9.5%) 

8 (34.8%) 

13 (56.5%) 

2 (8.7%) 

9 (100.0%) 

0 (0%) 

0 (0%) 

0.0362 

MTHFR 1298 

0 (AA) 

1 (AC) 

2 (CC) 

18 (52.9%) 

12 (35.3%) 

4 (11.8%) 

29 (69.1%) 

9 (21.4%) 

4 (9.5%) 

10 (43.5%) 

9 (39.1%) 

4 (17.4%) 

9 (100.0%) 

0 (0%) 

0 (0%) 

0.0885 

MTHFR Deficiency 

0% 

15% 

30% 

35% 

50% 

70% 

mean ± SD 

(range) 

2 (5.9%) 

7 (20.6%) 

4 (11.8%) 

11 (32.4%) 

5 (14.7%) 

5(14.7%) 

35.6 + 19.5 

(0–70) 

11 (26.2%) 

6 (14.3%) 

4 (9.5%) 

14 (33.3%) 

3 (7.1%) 

4 (9.5%) 

26.9+ 21.4 

(0–70) 

0 (0.0%) 

4 (17.4%) 

4 (17.4%) 

8 (34.8%) 

6 (26.1%) 

1 (4.4%) 

36.1 + 13.9 

(15–70) 

9 (100.0%) 

0 (0%) 

0 (0%) 

0 (0%) 

0 (0%) 

0 (0%) 

0 

0 

<0.0001 

 >50% 10 (29.4%) 7 (16.7%) 7 (30.4%) 0 (0%) 0.1553 

MTR 2756 

0 (AA) 

1 (AG) 

2 (GG) 

20 (58.8%) 

11 (32.4%) 

3 (8.8%) 

30 (71.4%) 

11 (26.2%) 

1 (2.4%) 

21 (91.3%) 

2 (8.7%) 

0 (0%) 

4 (44.4%) 

5 (55.6%) 

0 (0%) 

0.0475 

MTRR 66 

0 (AA) 

1 (AG) 

2 (GG) 

7 (20.6%) 

15 (44.1%) 

12 (35.3%) 

20 (48.8%) 

18 (43.9%) 

3 (7.3%) 

17 (73.9%) 

4 (17.4%) 

2 (8.7%) 

3 (33.3%) 

6 (66.7%) 

0 (0%) 

0.0002 

DHFR 19 bp 

Del/Del 

Ins/Del 

Ins/Ins 

3 (8.8%) 

17 (50.0%) 

14 (41.2%) 

24 (57.1%) 

13 (31.0%) 

5 (11.9%) 

4 (17.4%) 

7 (30.4%) 

12 (52.2%) 

2 (22.2%) 

5 (55.6%) 

2 (22.2%) 

<0.0001 

Total Polymorphism (0–

10) 

>4 

mean + SD 

(range) 

16 (47.1%) 

3.62 + 1.18 

(1–6) 

21 (50.0%) 

3.31 + 1.37 

(0–6) 

5 (21.7%) 

2.57+ 1.24 

(1–5) 

1 (11.1%) 

2.22 + 0.97 

(1–4) 

0.0322 

0.1244 

Table 5. Distribution of gene polymorphisms per control and cancer groups across racial groups. 

n (%) Control Group  Cancer Group 

Genotypes 0 1 2 
p-value 

(HWE) 

Population 

Allele 

Frequency 

0 1 2 

MTHFR 677 CC CT TT  % C/T  CC CT TT 

Total 28 (51.9) 21 (44.4) 5 (9.3) NS 75/25 23 (42.6) 25 (46.3) 6 (11.1) 

White 8 (50.0) 7 (43.8) 1 (6.2) NS 53/47 5 (27.8) 9 (50) 4 (22.2) 

Asian 12 (52.2) 8 (34.8) 3 (13.0) NS 70/30 9 (47.4) 9 (47.4) 1 (5.2) 

Hispanic 4 (36.4) 6 (54.5) 1 (9.1) NS 55/45 4 (33.3) 7 (58.3) 1 (8.3) 

Black 4 (100) 0 (0) 0 (0) - 91/9 5 (100) 0 (0) 0 (0) 

MTHFR 1298 AA AC CC  % A/C AA AC CC 

Total 32 (59.2) 15 (27.8) 7 (13) 0.0314 75/25 34 (63) 15 (27.8) 5 (9.3) 

White 7 (43.8) 6 (37.5) 3 (18.8) NS 85/15 11 (61.1) 6 (33.3) 1 (5.6) 

Asian 16 (69.6) 5 (21,7) 2 (8.7) NS 78/22 13 (68.4) 4 (21.1) 2 (10.5) 

Hispanic 5 (45.4) 4 (36.4) 2 (18.2) NS 84/16 5 (41.7) 5 (41.7) 2 (16.7) 

Black 4 (100) 0 (0) 0 (0) - 85/15 5 (100) 0 (0) 0 (0) 

MTR 2756 AA AG GG  % A/G AA AG GG 

Total 39 (72.2) 12 (22.2) 3 (5.6) NS  36 (66.7) 17 (31.5) 1 (1.8) 

White 10 (62.5) 4 (25.0) 2 (12.5) NS 84/16 10 (55.5) 7 (38.9) 1 (5.5) 

Asian 17 (73.9) 5 (21.7) 1 (4.3) NS 65–91/9–35 13 (68.4) 6 (31.6) 0 (0) 

Hispanic 11 (100) 0 (0) 0 (0) - 19/81 10 (83.3) 2 (16.7) 0 (0) 

Black 1 (25) 3 (75) 0 (0) NS 30–37/63–70 3 (60.0) 2 (40.0) 0 (0) 



J. Pers. Med. 2018, 8, 10  8 of 21 

 

 

MTRR 66 AA AG GG  % A/G AA AG GG 

Total 28 (52.6) 18 (33.4) 7 (13) NS 64/36 19 (35.6) 25 (46.8) 10 (18.5) 

White  3 (18.8)  6 (37.5)  7 (43.8) NS 45/55 4 (22.2)  9 (50.0) 5 (27.8) 

Asian 14 (63.6)  8 (36.4)   0 (0) NS 74/26 6 (31.6) 10 (52.6) 3 (15.8) 

Hispanic 10 (90.9) 1 (9.1)   0 (0) NS 72/28 7 (58.3)   3 (25.0) 2 (16.7) 

Black   1 (25.0)  3 (75.0)   0 (0) NS 73/27  2 (40.0)  3 (60.0)    0 (0) 

DHFR 19 bp II ID DD  % I/D II ID DD 

Total 20 (37) 17 (31.5) 17 (31.5) 0.0068 50/50 13 (24.1) 25 (46.3) 16 (29.6) 

White   2 (12.5)  6 (37.5) 8 (50.0) NS 45–47/53–55 1 (5.6) 11 (61.1) 6 (33.3) 

Asian 15 (65.2)  6 (26.1)   2 (8.7) NS 63/37 9 (47.4)   7 (36.8) 3 (15.8) 

Hispanic  2 (18.2) 4 (36.4) 5 (45.4) NS 58/42 2 (16.7)  3 (25.0) 7 (58.3) 

Black   1 (25.0)  1 (25.0)  2 (50.0) NS 55/45 1 (20.0)  4 (80.0)    0 (0) 

HWE: Hardy–Weinberg equilibrium; - not available; NS: Not significant; HWE calculator:  

http://www.koonec.com/k-blog/2010/06/20/hardy-weinberg-equilibrium-calculator/; 

http://useast.ensembl.org/index.html;  

https://www.cdc.gov/genomics/population/genvar/frequencies/mthfr.htm  

2.2. Most Influential Predictors per Category—The Ensemble Method 

Influential predictors were identified in three categories: genetic factors, demographic/ 

environmental factors, and lifestyle factors (as indicated by health metrics) [48,49]. Individual 

predictors were then selected by using the decision tree methods to build models and then from the 

rank order of column contributions selecting the most influential variables using the bootstrap forest 

method [28–31]. The column contribution is presented using the G2 statistics, which is derived from 

the conventional likelihood ratio chi-square statistic, as chi-square is a test of goodness-of-fit between 

the expected count and the actual account. By the same token, G2 indicates how well the expected 

count and actual count classified into that group fit with each other.  

The most crucial genetic predictors of cancer (Table 6) appeared to be MTRR66 polymorphism 

and MTHFR deficiency. On the rank order of importance among the 10 demographic/environmental 

factors (Table 7), BMI ranked the highest for importance, followed on the next level by marital status 

and race, then dropped to the variables of exposure to pollution and gender, then dropped to health 

insurance coverage and air quality in the community, and finally to variables including the 

convenience of access health care, air quality in the home, and tobacco smoker in the home. Our 

exploration found that age alone trumped all other potential predictors. However, this result is not 

informative because it is a well-known fact that older people are more vulnerable to chronic health 

issues leading to cancer. This piece of information about age cannot lead to any actionable item 

because nothing can be done to reverse aging. Thus, age was not included in the exploratory analysis 

to allow other potential predictors to emerge. Among the 16 lifestyle/health metrics variables (Table 

8), after six rows there is a sharp drop of G2, and therefore stress, physical activity minutes, time using 

alcohol, spiritual support, sleepiness, and functional role are considered the most important 

predictors.  

Table 6. Genetic predictors of cancer. 

Term 
Number of 

Splits 
G2 Column Contribution Portion 

MTRR A66G Polymorphism  46 1.09506968  0.3082 

MTHFR Deficiency 47 0.82548898  0.2324 

DHFR 19 bp Deletion 43 0.48910685  0.1377 

MTR A2756G Polymorphism 46 0.4855324  0.1367 

MTHFR A1298C Polymorphism 42 0.41353505  0.1164 

MTHFR C677T Polymorphism 33 0.24403481  0.0687 

 

  

http://www.koonec.com/k-blog/2010/06/20/hardy-weinberg-equilibrium-calculator/
http://useast.ensembl.org/index.html
https://www.cdc.gov/genomics/population/genvar/frequencies/mthfr.htm
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Table 7. Demographic/environmental predictors of cancer. 

Term 
Number of 

Splits 
G2 Column Contribution Portion 

Body mass index 10 6.78930886  0.3058 

Marital Status 7 4.42559099  0.1993 

Race 7 3.76884353  0.1698 

Exposure to Pollutants 3 2.12649039  0.0958 

Gender 5 1.81587428  0.0818 

Insurance Coverage 3 1.17074973  0.0527 

Air Quality in the Community 5 1.06350409  0.0479 

Convenience of HealthcareAccess 3 0.52529395  0.0237 

Air Quality in the Home 3 0.29975415  0.0135 

Tobacco Smoker in the Home 2 0.21686301  0.0098 

Table 8. Lifestyle predictors of cancer. 

Term Number of Splits G2 Column Contribution Portion 

Stress 27 3.43552989  0.1093 

Physical Activity  30 3.37660068  0.1074 

Times Using Alcohol 31 3.13235692  0.0996 

Spiritual Support 25 2.91976087  0.0929 

Sleepiness 28 2.87042298  0.0913 

Functional Role 22 2.53679611  0.0807 

Whole Grain Dietary Intake 17 1.92470816  0.0612 

Functional Capacity 16 1.81050686  0.0576 

Fruits Intake 20 1.52985178  0.0487 

Vegetables Intake 20 1.51937688  0.0483 

Cognitive Capacity 16 1.36910873  0.0435 

Depression 13 1.32859637  0.0423 

Health Status Overall 11 1.25492503  0.0399 

Nervous and Anxious 12 1.17885473  0.0375 

Total Liquid Intake 17 0.80560452  0.0256 

Tobacco Smoking 8 0.45134732  0.0144 

 

In the second stage, dimension reduction, our strategy was to identify the most influential 

predictors within the three categories of genetic factors, demographic/environmental factors, and 

lifestyle factors (as indicated by health metrics). To select the most influential predictors within each 

category, we used the criteria of column contribution and variable importance. Both the ensemble 

method and the regression methods were run to identify potential predictors in each group and in 

each category. The misclassification rates of both models were compared to verify the function of a 

predictive model according to genetic, demographic/environmental factors, and lifestyle categories. 

For this sample, the random forest models outperformed the original logistic regression analyses for 

all three domains of factors, as presented by lower misclassification rates (Table 9). 

Table 9. Model comparisons between bootstrap forest and logistic regression. 

 Misclassification Rates 

Factors Bootstrap Forest Logistic Regression 

Demographic–Environmental  0.1942 0.2353 

Genetic  0.2019 0.3137 

Health Metrics/Lifestyle  0.1584 0.2475 

2.3. Predictors for Gene–Environment Interaction  

The most significant variables for gene–environment interactions were then taken into 

consideration simultaneously, and Table 10 presents the rank order of important factors by G2 and a 

portion of combined bootstrap forest analyses of all three domain factors. G2 is based on LogWorth 
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and the likelihood ratio chi-square statistics, whereas portion is counted by how often the variable 

recurs in the repeated analyses. It is important to point out that like using the scree plot in factor 

analysis, the decision of adopting the most important predictors is based on the overall pattern i.e. 

how the variable pops out in G2 relative to others, not an absolute cut-off like the alpha level. It is 

noteworthy that the first four top predictors are modifiable (BMI, physical activity, sleepiness, and 

spiritual support). Genetic factors (MTHFR deficiency and MTRR A66G polymorphism), which are 

non-malleable, rank number five and number nine for the total sample.  

The role of important predictors in cancer was further examined by racial–ethnic subgroups to 

explore potential actionable factors per racial–ethnic groups. Table 11 indicates that for Asians  

(n = 42) the number one predictor was sleepiness, then followed by the stress levels, then MTRR A66G 

polymorphism and physical activity levels. The outstanding G2 suggests that sleepiness and stress 

trumped all other factors in predicting cancer for Asians. For Hispanics (n = 23) the top predictor was 

spiritual support, which trumped all other factors, as shown in Table 12. For Whites (Table 13,  

n = 34), the most important variables were physical activity, BMI, and alcohol use. Because there were 

only nine black participants, there was not enough variation for resampling to construct a model 

using the bootstrap forest method. 

Table 10. All predictors of cancer for gene–environment interactions. 

Term 
Number of 

Splits 
G2 Column Contribution Portion 

Body mass index 73 2.34801946  0.1604 

Physical Activity  67 1.83265224  0.1252 

Sleepiness 74 1.78325631  0.1218 

Spiritual Support 63 1.75806876  0.1201 

MTHFR Deficiency 76 1.66137349  0.1135 

Times Using Alcohol 63 1.46035411  0.0998 

Functional Role 65 1.3622703  0.0931 

Stress 63 1.32282568  0.0904 

MTRR66 Polymorphism 58 1.10742696  0.0757 

 Table 11. Predictors of cancer for Asians. 

Term Number of Splits G2 Column Contribution Portion 

Sleepiness 44 1.44019311  0.2209 

Stress 35 1.32619458  0.2034 

MTRR66 Polymorphism 32 1.02397504  0.1570 

Physical Activity, Minutes/Week 38 0.9726631  0.1492 

Body mass index 25 0.643443  0.0987 

MTHFR Deficiency 28 0.46681593  0.0716 

Spiritual Support 21 0.29696771  0.0455 

Times Using Alcohol 22 0.19012811  0.0292 

Functions in Roles 21 0.16033891  0.0246 

Table 12. Predictors of cancer for Hispanics. 

Term Number of Splits G2 Column Contribution Portion 

Spiritual Support 41 2.51879811  0.4094 

Body mass index 18 0.82973589  0.1349 

Stress 23 0.60238034  0.0979 

Functions in Roles 20 0.54764955  0.0890 

Times Using Alcohol 24 0.48150149  0.0783 

Sleepiness 24 0.4798417  0.0780 

Physical Activity, Minutes/Week 18 0.30328675  0.0493 

MTHFR Deficiency 15 0.22482419  0.0365 

MTRR66 Polymorphism 8 0.16489531  0.0268 
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Table 13. Predictors of cancer for Whites. 

Term 
Number of 

Splits 
G2 Column Contribution Portion 

Physical Activity, Minutes/Week 44 1.64218014  0.1916 

BMI 40 1.46162302  0.1705 

Times Using Alcohol 25 1.29832268  0.1514 

Functions in Roles 35 1.15435558  0.1346 

MTHFR Deficiency 29 1.11010973  0.1295 

Sleepiness 34 0.73467524  0.0857 

Stress 21 0.61669827  0.0719 

MTRR66 Polymorphism 19 0.32183586  0.0375 

Spiritual Support 14 0.23328255  0.0272 

2.4. Predictive Modeling for Gene–Environment Interactions—Generalized Regression Analysis 

Using the most influential variables identified in Section 2.2., two generalized regression models 

were developed using leave-one-out cross-validation methods to predict the probability of cancer. 

Generalized regression is also known as penalized regression. As the name implies, the modeling 

process penalizes complicated models to avoid overfitting. Hence, compared with conventional 

regression modeling, generalized regression tends to yield an optimal model. In each case, the models 

were first compared to a logistic regression model with validation for a baseline. For model one the 

parameter estimates along with the associated p-values for the baseline logistic regression results 

with validation are shown in the left panel of Table 14, including significant interaction terms (BMI 

interacting with alcohol use) in addition to total gene polymorphism score and other significant 

parameters. The regularized parameters remaining in the generalized regression elastic net Alkaike’s 

information criterion (AIC) with correction (AICc) and leave-one-out models are shown in the middle 

and right panels of Table 14, with the predictor, alcohol use, eliminated from the model as indicated 

by the zero value for the estimate. 

Table 14. Baseline logistic regression model and generalized regression elastic net models on the 

predictors of colorectal cancer from gene–environment interactions (of total gene polymorphisms).  

 Logistic Regression 

Original Model with 

Validation 

Generalized Regression Elastic Net Model 

With AICc Validation With Leave-One-Out 

Validation 

Parameters Estimate p (X2) Estimate p (X2) Estimate p (X2) 

(Intercept) −0.2875 0.6144 0.3218 0.4096 0.3486 0.3785 

Gender 

(Male/Female) 

1.5023 0.0119 1.2972 0.0074 1.4286 0.0018 

BMI * Alcohol Use, 

Interaction 

−2.2790 0.0367 −1.9512 0.0146 −1.2376 0.0062 

Total Polymorphisms −0.7185 0.1865 −1.1444 0.0125 −2.1202 0.0063 

BMI 1.3637 0.0602 0.7541 0.1993 0.8991 0.1036 

Alcohol Use 0.5468 0.4038 0 1.000 0 1.000 

Misclassification Rate 0.3714 - 0.2963 - 0.2804 - 

AICc 56.98 - 138.81 - - - 

AUC 0.7817 - 0.7531 - 0.7652 - 

* Denotes Interaction; - not available; AICc: Akaike's information criterion with corrections; AUC: Area under 

the curve. 

The predictive performance for the generalized regression elastic net models can be 

characterized by examining the receiver operating characteristic (ROC) curve and the 

misclassification rates (Figure 1). The misclassification rate for the baseline logistic regression in the 

left panel was higher than the other two methods, with a misclassification rate of 0.3714 as compared 

to 0.2963 and 0.2804. The elastic net validation model outperformed the original logistic regression 

model on predictive accuracy by lower misclassification rates. The ROC areas under the curve are 
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shown in Figure 1, with the baseline logistic regression model in the left panel with an area under the 

curve of 0.7817 and the generalized regression elastic net AICc model and leave-one-out model in the 

middle and right panels with an area under the curve (AUC) of 0.7652. In the elastic net models, 

alcohol use was the variable to leave out; however, BMI and alcohol had significant interactions. 

Therefore, as the base of the interactive variable, the BMI variable must remain in the model. 

 

Logistic Regression with Validation Elastic Net with AICc Validation Elastic Net with Leave-One-Out 

Figure 1. Receiver operating characteristic (ROC) curve and AUC for the baseline logistic regression 

model (left panel), elastic net with Akaike’s information criteria with correction validation model 

(middle), and leave-one-out validation model (right panel) on the predictors of colorectal cancer from 

gene –environment interactions (of total gene polymorphisms).  

In a similar way to the previous model, in the second model we used an elastic net AICc 

validation and with leave-one-out validation with a baseline model of logistic regression with a 

validation column by including the individual gene parameters and significant interaction terms 

(gender with BMI, MTHFR C677T with BMI.  Results of the parameters for the logistic regression 

are shown in Table 15, and results for the model results are shown in Figure 2 for ROC area under 

the curve.  As before, the generalized regression Elastic Net models outperformed the baseline 

logistic regression model with better predictive accuracy (lower misclassification rates and larger 

AUCs). In the elastic net model, BMI was the variable to leave-out; however, BMI and gender status 

as well as BMI and MTHFR C677T polymorphism had significant interactions. Therefore, BMI 

variable must remain in the model.  

In both predictive models of CRC, by either including total gene polymorphisms or individual 

genes as part of genetic factors of gene–environment interactions, gender (more men than women in 

the CRC group compared to the control group) and BMI status (more overweight and obese status in 

the CRC group than the control group) were consistent predictors. In the model where the total gene 

polymorphism was used for prediction of CRC, alcohol use (more use in the CRC group than the 

control group) was interactive with BMI status. In the model where the single genes were included 

for the prediction of CRC, the BMI variable was interactive with both gender and MTHFR C677T 

polymorphism and the exposure to pollution was an additional predictor of CRC in the model when 

single genes were included. These predictive models were run for each racial–ethnic subgroup. 

However, we did not observe stable results because of the limited number of samples per racial–

ethnic subgroups. Therefore, the subgroup analyses per racial–ethnic subgroups of the predictors of 

CRC from gene–environment interactions are not presented.  
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Table 15. Baseline logistic regression model and generalized regression elastic net models on the 

predictors of colorectal cancer from gene –environment interactions (of single genes).  

 Logistic Regression 

Original Model 

With Validation 

Generalized Regression Elastic Net Model 

 Elastic Net Model 

With AICc Validation 

With Leave-One-Out 

Cross Validation 

Parameters Estimate p-value 

(X2) 

Estimate p-value 

(X2) 

Estimate p-value (X2) 

(Intercept) 0.5768 0.5445 1.2292 0.0498 1.3171 0.0487 

Gender (Male/Female) 3.1964 0.3465 1.4525 0.0049 1.8934 0.0006 

Gender (Male/Female) * BMI −4.2655 0.0039 −-1.9736 0.0219 −-2.5539 0.0042 

MTHFR C677T Polymorphism −2.3824 0.0345 −0.9065 0.0523 −1.1847 0.0174 

MTHFR C677T Polymorphism 

* BMI 

2.2401 0.1157 1.2404 0.0667 −1.5750 0.0253 

Exposure to Pollution −0.8194 0.2853 −1.2110 0.0368 −1.2466 0.0458 

MTRR66 −0.8694 0.1426 −0.6792 0.0975 1.3172 0.0800 

BMI 0.8029 0.3465 0 1.000 0 1.000 

Misclassification Rate 0.4103 - 0.3241 - 0.3396 - 

AICc 85.24 - 140.69 - - - 

AUC 0.5842 - 0.7536 - 0.7639 - 

* Denotes Interaction; - not available; AICc: Akaike's information criterion with corrections; AUC: Area under 

the curve. 

Logistic Regression with Validation 

 

Elastic Net with AICc Validation 

 

Elastic Net with Leave-One-Out 

Figure 2. Receiver operating characteristic curve and AUC for baseline logistic regression model (left 

panel), elastic net with Akaike’s information criteria with correction validation model (middle), and 

leave-one-out validation model (right panel) on the predictors of colorectal cancer –environment 

interactions. (of single genes) 

3. Discussion 

We presented the gene–environment interactions and predictors of CRC by including key genes 

in the one-carbon metabolism pathways, with environmental and lifestyle factors, by using various 

analytics to validate the findings across the methods. Using the ensemble method, the most 

influential factors included gene polymorphisms of MTRR A66G and MTHFR, and lifestyle factors 

such as BMI, exposure to pollutants, and gender. Using the most influential factors, the two best 

predictive models were also generated using the generalized regression models and leave-one-out 

cross validation methods. With the machine learning approach, these models included a random 

validation dataset to yield more reliable prediction. For the prediction of CRC, BMI status and gender 

were consistent predictors in the models. The use of alcohol (more use in the CRC group) interacted 
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with BMI status in predicting CRC. BMI status was also interactive with both gender and MTHFR 

C677T polymorphism in predicting CRC. Also, the exposure to pollutants was an additional predictor 

of CRC. 

While previous studies have presented gene–environment interactions, associating genes in the 

one carbon metabolism pathways with folate deficiency [24,25,27] and CRC [24,27], new predictive 

modeling and validation analytics with interactions have become readily available for convenient use 

through SAS JMP programming (SAS Institute, Cary, NC, USA). Therefore, we included the gene–

environment interactions, between the modifiable factors and the genes in our analytic approach, to 

examine potential epigenetic mechanisms. Overall, the CRC group had increased combined gene 

polymorphisms than the control group, including MTHFR C677T, MTR A2756G, MTRR A66G, and 

DHFR 19bp, except MTHFR A1298C. Additional modifiable factors included BMI status, exposure to 

pollutants, and alcohol use for CRC risks.  

We presented the distributions of the genotype alleles for five genes in the one carbon 

metabolism pathway for four racial–ethnic groups. In addition to the four gene polymorphisms 

(MTHFR C677T and A1298C, MTR A2756G, and MTR A66G) that were presented for the CRC  

cases [24,27], and in numerous meta analyses [10–13], we included DHFR 19 bp deletion as an 

additional gene in the folate-metabolism pathway. DHFR 19 bp in the folate methylation pathway 

has not been presented for the CRC cases in various ethnic groups before. These four ethnic groups 

presented different polymorphism patterns for these five genes. 

As a proof-of-concept study, to examine gene–environment interactions for cancer prevention, 

we used the ensemble method, as it is a well-known remedy for small-sample studies to validate the 

analyses by the random subsets of samples [45]. We further used the generalized regression method 

integrating significant parameters and bivariate interactions to maximize the model quality with the 

simplest optimal model. We did not have a sufficient number of subjects for the ethnic subgroups for 

analyses, especially the Black sample, for most influential predictors or subgroup analyses using the 

generalized regression model. Therefore, further studies are needed that include larger samples to 

further validate these findings for various ethnic groups. We presented the very first study cross-

validating the findings using both conventional inferential statistics and the ensemble method to 

predict the risk of CRC. While there are limitations to family-based, case-control designs because of 

genetic associations among the family members, we used the family-based analysis technique to 

explore and control for the family associations. Despite these limitations, there are advantages for 

methodological concerns to include family members in community-based studies. First, the inclusion 

of family members can enforce the active participation of the family as an ecological unit, and more 

reliable reporting of modifiable lifestyle or environmental parameters [54,55]. Involving family 

members in a community-based study can also facilitate support from family members for patients, 

with a heightened awareness within the family unit of the importance of modifiable lifestyles, thus 

helping to adopt healthier lifestyles. The validity of research observations is also strengthened in that 

patient lifestyles are better monitored with the increased awareness of the family unit. Therefore, the 

rigor and reliability of the data are enhanced, for sustainable interventions with behavioral 

improvements.  

To add to the genetic factors, our results point to a list of modifiable lifestyle and environmental 

factors [33–36] in relation to the gene–environment interactions for the prevention of CRC. The top 

modifiable factors included BMI status, environmental pollution, and alcohol use. Recent studies 

including metaprediction studies that examined gene–environment interactions consistently 

presented that increased air pollution is associated with increased gene polymorphism and trends to 

increased disease risks across various disease conditions, especially for MTHFR C677T 

polymorphisms and genes in the methylation pathways [28–35]. Environmental toxicants such as air 

pollution and smoking can induce oxidative stress and disregulate reactive oxygen species [28–30]. 

Studies suggested that exposure to oxidative stress caused damage to cellular DNA that leads to 

mutations, genomic instability, and ultimately malignancy [28–30]. From these understandings, 

future studies may focus on the epigenetics of methyl-donors to detox the hazards from 



J. Pers. Med. 2018, 8, 10  15 of 21 

 

 

environmental pollution, with healthy lifestyles and weight-based interventions to prevent CRC. 

Additionally, future research can be designed to examine environmental pollutants and lifestyles 

with gene–environment interactions in CRC prevention. 

4. Materials and Method 

4.1 Study Population and Setting 

We included 108 participants, 54 CRC cases and 54 matched family/friend controls by accessing 

the California Cancer Registry (CCR) database and additional cases through case referrals by the 

participants. The study was approved by the appropriate Human Subjects Institutional Review 

Boards (IRB) from the California State Committee for the Protection of Human Subjects for data 

access through the CCR (CPHS-12-12-1007, approved 2013-2019), and from the local educational 

institutions (Azusa Pacific University, approved 2013-2015; Augusta University, 806069-7, approved 

2015-2018) . To qualify for the study, CRC cases had to be: 1) not at the terminal stage of cancer 

expecting death within six months, 2) 18–80 years of age, 3) have a family member living with or 

nearby the case for over one year. Family members must be: 1) 18–80 years of age, 2) not having CRC, 

3) not at the terminal stage of other illness expecting death within the six months. Both the case and 

the family member had to have adequate cognitive and mental capacities, and be willing to 

participate in the interviews and biological sample for genotyping data collection. The CRC cases 

were survivors, having been diagnosed with CRC for at least two years by the time the CCR released 

their data. CRC cases and their families were screened based on the inclusion criteria. 

Given that a diverse racial–ethnic population resides in southern California, we targeted to 

recruit at least five families per racial–ethnic group. representing the proportions of various 

populations in southern California. Following the approval by the IRBs, CRC cases were screened 

and randomly selected by systematic stratification based on the racial–ethnic groups from the roster 

databases provided by the CCR. The qualified cases were contacted through the established 

procedures as required by the CCR, with an introduction letter followed with phone contact. 

Moreover, family/friend members residing with or near the CRC cases were recruited along with the 

CRC cases. Most families were visited at their homes for data collection while a few families visited 

the campus to participate in data collection.  

4.2 Demographic/Environmental and Lifestyle Data 

Participants were interviewed with items of standardized instruments for health-related lifestyle 

status [33], following the framework of My Own Health Report (MOHR). The MOHR project 

included a web-based survey with the list of health metrics including health behaviors and lifestyles. 

The intent of the MOHR project was to harmonize the national health metrics databases with a 

minimum dataset in the primary care settings. For this project, the elements of these health metrics 

included in the MOHR project were included to evaluate the lifestyles in relation to the polygenic 

one carbon metabolism pathways. Family history, functional capacities, cancer risks and activities, 

and demographics were collected using the items summarized from the Centers for Disease Control 

and Prevention (CDC) 1999–2012 National Health and Nutrition Examination Survey and National 

Health Interview Survey [50]. Community environment and health were collected using the items 

listed in the integrated prevention framework of Institute of Medicine [51] and World Health 

Organization [52] for cancer prevention. The family pedigrees were completed with family history 

data using the standard process established by the Coalition for Health Professional Education in 

Genetics [48].  

4.3 Genotyping Data 

Data sent to the laboratories were de-identified for subjects. Laboratory staff members were 

blinded to the case control and other status of the samples to enhance the objectivity of laboratory 
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analyses. The specimens were stored on ice and sent in containers with dry ice via express mail to the 

laboratory following data collection. Once arrived at the laboratory, specimens were kept frozen in 

deep freezer at -80° C freezer until analysis.  

Genotyping procedures were described elsewhere earlier [56,57]. Briefly, genomic DNA was 

isolated from salivary samples using the SK-1 swab and Isohelix collection tubes with dry capsules 

(Boca Scientific, Boca Raton, FL, USA), and/or from peripheral blood samples using the Qiagen Blood 

DNA Kit (Qiagen Inc., Valencia, CA, USA). The Taqman technique [56] was used for genotyping of 

the gene polymorphisms using allele specific fluorescent probes with a StepOnePlus™ real-time 

polymerase-chain reaction system (Thermo Fisher Scientific, Waltham, MA, USA). Quality control 

was strictly conducted with four duplicate positive controls and four negative controls loaded in each 

of 96-well plates. Additionally, genotyping assays were repeated with 10% of the samples that were 

duplicate with salivary and blood samples, and genotyping results were in 100% agreement for the 

repeated tests. The results of the genotyping for five genes were shared with the participants within 

six months or sooner following the data collection, as soon as they became available. 

MTHFR enzyme deficiency was calculated by adding up the total loss of enzymatic functions 

from both MTHFR C677T and A1298C polymorphisms, 35% for 677 CT and 70% for 677 TT 

polymorphisms, and 15% for 1298 AC and 30% for 1298 CC variants [20,21,58]. The total gene 

mutations from five genes were computed together, with possible ranges of 0–10, with scores of one 

for heterozygous and two for homozygous polymorphism mutations per each of the five genes 

included in this study. 

4.4 Data Analysis 

Our data analysis followed three phases of exploratory family-based analysis [44] to adjust for 

the effects of sharing the genetic heritage within the family, data visualization and understanding, 

data reduction, and model building using JMP Pro 13 (SAS Institute, Cary, NC, USA) [59,60]. In the 

first stage of data visualization and understanding, we used bootstrap forest, also known as bagging 

(i.e. bootstrap aggregating), which is one of the most popular ensemble methods [24–27]. The 

ensemble methods are based on the logic of resampling, which is a well-known remedy for small-

sample studies [45]. In resampling the sample is treated as the virtual population and then different 

subsets are randomly drawn from the sample for multiple analyses. Bias can be observed and 

corrected by such repeated analyses on random subsets [46]. 

The ensemble method is a resampling technique that synthesizes analyses of many subsets of 

the original data. This approach is superior to conventional regression modeling because ordinal least 

square regression or logistic regression analyses tend to yield an overfitted model. Numerous studies 

have confirmed that the ensemble approach outperforms any single model, such as regression or 

univariate statistics [61–63]. In addition, conventional statistical procedures are limited by the sample 

size. If the number of parameters to be estimated exceeds the degrees of freedom, the regression 

model would be highly unstable. The ensemble method is based on machine learning, in which 

datasets are partitioned and analyzed by different models. Each model is considered a weak learner 

and the final solution is a synthesis of all these weak learners. When different models are generated 

by resampling, inevitably some are high bias model (underfit) while some are high variance model 

(overfit). In the end, the ensemble cancels out these errors. Specifically, each model carries a certain 

degree of sampling bias, but finally the errors also cancel out each other [62].  

In the second stage, dimension reduction, our strategy was to identify the most influential 

predictors within the three categories of genetic factors, demographic/environmental factors, and 

lifestyle factors (as indicated by health metrics). To select the most influential predictors within each 

category, we used the criteria of column contribution and variable importance. Both the ensemble 

method and the regression methods were run to identify potential predictors in each group in each 

category. The misclassification rates of both models were compared to verify the function of a 

predictive model per genetic, demographic/environmental factors, and lifestyle categories. As shown 

in Table 9, the bootstrap forest model in all three domains outperformed the original logistic 
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regression model with lower misclassification rates per category. Using the bootstrap forest ensemble 

method, G2 and the portion of column contribution per variable were used to present the rank order 

of importance.  

In the final stage of model prediction, we used generalized regression to obtain a smaller 

prediction error [59]. The most significant variables and significant interactions were visualized using 

the interaction profilers for bi-variate interactions of the three categories of variables, and the final 

set of significant variables were selected for the tested models. The prediction profiler enables the 

analyst to ask “what if” questions. Specifically, the analyst manipulates the levels of including 

different variables to see how the model is changed. By doing so we can understand how the 

interaction of various factors affect the outcome and the sensitivity of the model. Generalized 

regression is also known as penalized regression, meaning that the variable selection process 

penalizes complexity. To get the optimal model, the algorithm imposes a penalty on the model when 

redundant predictors are included. The index for showing complexity is AIC or AICc [64–66], 

developed by Hirotsugu Akaike [67,68], and is in alignment with Ockham’s razor: All things being 

equal, the simplest model tends to be the best one; and simplicity is a function of the number of 

adjustable parameters. Thus, a smaller AIC suggests a more optimal model. Specifically, AIC is a 

fitness index for trading off the complexity of a model against how well the model fits the data. The 

general form of AIC is AIC = 2k – 2lnL, where k is the number of parameters and L is the likelihood 

function of the estimated parameters. Increasing the number of free parameters to be estimated 

improves the model fitness, however, the model might be unnecessarily complex. To reach a balance 

between fitness and parsimony, AIC not only rewards goodness of fit, but also includes a penalty 

against over-fitting and complexity. Hence, the most optimal model is the one with the lowest AIC 

value. Since AIC attempts to find the model that best explains the data with a minimum of free 

parameters, it is considered an approach favoring simplicity. In this sense, AIC is better than R2 and 

adjusted R2, which always go up as additional variables enter in the model, favoring complexity. 

However, AIC does not necessarily change by adding variables. Rather, it varies based upon the 

composition of the predictors and thus it is a better indicator of the model quality [47]. Burnham and 

Anderson recommend replacing AIC with AICc [64,65], especially when the sample size is small, and 

the number of parameters is large. Actually, AICc converges to AIC as the sample size gets larger 

and larger. Hence, AICc should be used regardless of sample size and the number of parameters. The 

methodology of JMP Pro allows for several classes of modeling estimation methods including lasso, 

forward selection and elastic net [69], and several validation methods including the ones we chose, 

AICc validation and leave-one-out cross validation methods, because of their effectiveness for small 

data sets [70]. Model performance was assessed using misclassification rate (smaller is better), AICc, 

and the area under the ROC curve. 
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