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ABSTRACT 

 

Today there are quite a few widespread misconceptions of exploratory data analysis (EDA). One of these 

misperceptions is that EDA is said to be opposed to statistical modeling. Actually, the essence of EDA is not about putting 

aside all modeling and preconceptions; rather, researchers are urged not to start the analysis with a strong preconception 

only, and thus modeling is still legitimate in EDA. In addition, the nature of EDA has been changing due to the emergence 

of new methods and convergence between EDA and other methodologies, such as data mining and resampling. Therefore, 

conventional conceptual frameworks of EDA might no longer be capable of coping with this trend. In this article, EDA is 

introduced in the context of data mining and resampling with an emphasis on three goals: cluster detection, variable 

selection, and pattern recognition. TwoStep clustering, classification trees, and neural networks, which are powerful 

techniques to accomplish the preceding goals, respectively, are illustrated with concrete examples. 
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RESUME� 

 

Hoy por hoy existen diseminadas varias definiciones erróneas acerca del análisis de datos exploratorio (ADE). Una 

de tales definiciones afirma que ADE es opuesto a la modelación estadística. De hecho, en ADE no se trata de obviar 

modelaciones y pre-concepciones, al contrario se trata de hacer análisis usando no únicamente pre-concepciones fuertes, lo 

que en si hace legitimo el uso de modelación en ADE. Además, la naturaleza de ADE ha estado cambiando debido a la 

emergencia de nuevos métodos y la convergencia de ADE con otras metodologías, tales como la extracción de datos y el 

remuestreo. Por tanto, las definiciones convencionales de ADE no dan cuenta de su estado actual. En este artículo, ADE se 

presenta en el contexto de la extracción de datos y el remuestreo haciendo énfasis en tres objetivos: detección de 

conglomerados, selección de variables, y reconocimiento de patrones.  Las técnicas de clasificación en dos pasos, árboles de 

clasificación, y redes neuronales sirven como ejemplos para lograr los objetivos delineados. 

.  

 

Palabras clave: Análisis de datos exploratorio, extracción de datos, remuestreo, validación cruzada, visualización de datos, 
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Exploratory data analysis (EDA) was introduced 

by Tukey and his colleagues about four decades ago 

(Tukey, 1969, 1977, 1986a, 1986b, 1986c, Tukey & Wilk, 

1986), and since then numerous publications regarding 

EDA have become available to researchers (e.g. Behrens, 

1997; Behrens & Yu, 2003; Fielding, 2007; Martinez, 2005; 

Myatt, 2007; Schwaiger, & Opitz, 2001; Velleman & 

Hoaglin, 1981). Although EDA is no longer considered a 

new methodology, the author of this article, based upon 

teaching and consulting experiences, observed that today 

there are still quite a few widespread misconceptions of 

EDA. This phenomenon is partly due to the fact that EDA 

is a philosophy or mentality (skepticism and openness) 

(Hartwig & Dearing, 1979) rather than being a fixed set of 

formal procedures, and it is also partly owing to the trend 

that emerging methods, such as data mining and 

resampling, have been gradually changing the nature of 

EDA. As a remedy to those misconceptions, this paper will 

start with clarifying what EDA is not, and then introducing 

conventional EDA and its limitations. Next, EDA in the 

new context of data mining and resampling will be 

illustrated with concrete examples. Although these 

examples are from education or educational psychology, 

the principles of analyzing these data sets could be 

extended to experimental psychology as well as other 

branches of psychology. 

 

WHAT IS �OT EDA? 

 

When some people claim that their methodology is 

exploratory, what they actually mean is that they are not 

sure what they are looking for. Unfortunately, poor research 

is often implemented in the name of EDA. During data 

collection, some researchers flood their subjects with 

hundred of survey items since their research questions are 

not clearly defined and their variables are not identified. 

While it is true that EDA does not require a pre-determined 

hypothesis to be tested, it does not justify the absence of 

research questions or ill-defined variables. 

Another common misperception is that EDA is 

said to be opposed to statistical modeling. Because EDA is 

different from confirmatory data analysis (CDA), a set of 

statistical procedures aiming to confirm a pre-formulated 

hypothesis using either p-values or confidence intervals, 

some researchers believe that anything associated with 

modeling or pre-conceived ideas about the data would 

disqualify the analysis as a form of EDA. Gelman (2004) 

found that either EDA is often implemented in the absence 

of modeling or that EDA is used only in the early stages of 

model formulation, but disappears from the radar screen 

after the model is generated. Actually, EDA employs data 

visualization as a primary tool, which is often used in 

model diagnostics. For example, a quantile-quantile plot 

can be drawn to examine the gap between the data and the 

empirical distribution of a model. Sometimes, data should 

be explored in an iterative fashion by fitting as much 

structure as possible into a model and then using graphs to 

find patterns that represent deviations from the current 

model (Gelman, 2004). Following this line of reasoning, 

model-based clustering, which is based upon certain 

probabilistic inferences, is considered legitimate in EDA 

(Martinez, 2005).  

It is difficult for a data analyst to start with a “blank 

mind” and explore the data without any reference. 

Traditionally, researchers classify the modes of reasoning 

in research as induction (data-driven) and deduction (theory 

or hypothesis driven). Actually, there is a third avenue: 

abduction. Abductive reasoning does not necessarily start 

with fully developed models or no models at all. For 

example, when Kepler developed his astronomical model, 

he had some basic preconceptions, which were very general 

“hunches” about the nature of motion and forces, and also 

the basic idea that the Sun is the source of the forces 

driving the planetary system. It is beyond the scope of this 

article to thoroughly discuss abductive logic. Interested 

readers are advised to consult Yu (1994, 2006, 2009a). In 

alignment to abduction, the essence of EDA is not about 

putting aside all modeling and preconceptions; rather, 

researchers are urged not to start the analysis with a strong 

preconception only. 

 

CO�VE�TIO�AL VIEWS OF EDA 

 

Exploratory data analysis was named by Tukey 

(1977) as an alternative to CDA. As mentioned before, 

EDA is an attitude or philosophy about how data analysis 

should be carried out, instead of being a fixed set of 

techniques. Tukey (1977) often related EDA to detective 

work. In EDA, the role of the researcher is to explore the 

data in as many ways as possible until a plausible “story” of 

the data emerges. Therefore, the “data detective” should be 

skeptical of the “face” value of the data and keep an open 

mind to unanticipated results when the hidden patterns are 

unearthed.  

Throughout many years, different researchers 

formulated different definitions, classifications, and 

taxonomies of EDA. For example, Velleman and Hoaglin 

(1981) outlined four basic elements of exploratory data 

analysis: residual, re-expression (data transformation), 

resistant, and display (data visualization). Based upon 

Velleman and Hoaglin’s framework, Behrens and Yu 

(2003) elaborated the above four elements with updated 

techniques, and renamed “display” to “revelation.” Each of 

them is briefly introduced as follows: 

1. Residual analysis: EDA follows the formula that 

data = fit + residual or data = model + error. The fit or the 

model is the expected values of the data whereas the 

residual or the error is the values that deviate from that 

expected value. By examining the residuals, the researcher 

can assess the model’s adequacy (Yu, 2009b). 

2. Re-expression or data transformation: When the 

distribution is skewed or the data structure obscures the 
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pattern, the data could be rescaled in order to improve 

interpretability. Typical examples of data transformation 

include using natural log transformation or inverse 

probability transformation to normalize a distribution, using 

square root transformation to stabilize variances, and using 

logarithmic transformation to linearize a trend (Yu, 2009b). 

3. Resistance procedures: Parametric tests are 

based on the mean estimation, which is sensitive to outliers 

or skewed distributions. In EDA, resistant estimators are 

usually used. The following are common examples: 

median, trimean (a measure of central tendency based on 

the arithmetic average of the values of the first quartile, the 

third quartile, and the median counted twice), Winsorized 

mean (a robust version of the mean in which extreme scores 

are pulled back to the majority of the data), and trimmed 

mean (a mean without outliers). It is important to point out 

that there is a subtle difference between “resistance” and 

“robustness” though two terms are usually used 

interchangeably. Resistance is about being immune to 

outliers while robustness is about being immune to 

assumption violations. In the former, the goal is to obtain a 

data summary, while in the latter the goal is to make a 

probabilistic inference. 

4. Revelation or data visualization: Graphing is a 

powerful tool for revealing hidden patterns and 

relationships among variables. Typical examples of 

graphical tools for EDA are Trellis displays and 3D plots 

(Yu & Stockford, 2003). Although the use of scientific and 

statistical visualization is fundamental to EDA, they should 

not be equated, because data visualization is concerned with 

just one data characterization aspect (patterns) whereas 

EDA encompasses a wider focus, as introduced in the 

previous three elements (NIST Semantech, 2006).  

According to NIST Semantech (2006), EDA 

entails a variety of techniques for accomplishing the 

following tasks: 1) maximize insight; 2) uncover underlying 

structure; 3) extract important variables; 4) detect outliers 

and anomalies; 5) test underlying assumptions; 6) develop 

parsimonious models; and 7) determine optimal factor 

settings. Comparing the NIST’s EDA approach with 

Velleman and Hoaglin’s, and Behrens and Yu’s, it is not 

difficult to see many common threads. For example, 

“maximize insight” and “uncover underlying structure” is 

similar to revelation.  

 

LIMITATIO�S OF CO�VE�TIO�AL VIEWS TO 

EDA 

 

Although the preceding EDA framework provides 

researchers with helpful guidelines in data analysis, some of 

the above elements are no longer as important as before due 

to the emergence of new methods and convergence between 

EDA and other methodologies, such as data mining and 

resampling. Data mining is a cluster of techniques that has 

been employed in the Business Intelligence (BI) field for 

many years (Han & Kamber, 2006). According to Larose 

(2005), data mining is the process of automatically 

extracting useful information and relationships from 

immense quantities of data. Data mining does not start with 

a strong preconception, a specific question, or a narrow 

hypothesis, rather it aims to detect patterns that are already 

present in the data. Similarly, Luan (2002) views data 

mining as an extension of EDA. Like EDA, resampling 

departs from theoretical distributions used by CDA. Rather, 

its inference is based upon repeated sampling within the 

same sample, and that is why this school is called 

resampling (Yu, 2003, 2007). How these two 

methodologies alter the features of EDA will be discussed 

next. 

 

Checking assumptions 

 

In multiple regression analysis the assumption of 

the absence of multicollinearity (high correlations among 

predictors) must be met for the independent variables. If 

mutlicollinearity exists, probably the variance, standard 

error, and parameter estimates are all inflated. In addition to 

computing the variance inflation factor, it is a common 

practice to use a scatterplot matrix, a data visualization 

technique for EDA, to examine the inter-relationships 

among the predictors. While checking underlying 

assumptions plays an important role in conventional EDA, 

many new EDA techniques based upon data mining are 

non-parametric in nature. For example, recursive partition 

trees and neural networks are immune to multicollinearity 

(Carpio, & Hermosilla, 2002; Fielding, 2007). 

 

Spotting outliers 

 

In the past it was correct to say that outliers were 

detrimental to data analysis because the slope of a 

regression line could be driven by just a single extreme 

datum point. Thus, it is logical to assert that spotting 

outliers is an indispensable step in EDA. However, 

TwoStep clustering, a sophisticated EDA algorithm, has 

built-in mechanisms to handle outliers during the clustering 

process. Actually, before the analysis the researcher could 

not tell which case is an outlier because the references 

(clusters) have not been made yet. Further, the recursive 

partition tree, which is a newer EDA technique arising from 

data mining, is also immune against outliers (Fielding, 

2007).    

 

Data transformation 

 

Data transformation is used as a powerful 

technique to improve the interpretability of the data. But in 

the recursive partition tree, the independent variables do not 

require any transformation at all (Fielding, 2007). In 

addition, Osborne (2002) asserted that many 

transformations that reduce non-normality by changing the 

spacing between data points raises issues in the 



International Journal of Psychological Research, 2010. Vol. 3. No. 1. 
ISSN impresa (printed) 2011-2084 
ISSN electronic (electronic) 2011-2079 

Chon Ho, Yu. (2010). Exploratory data analysis in the context of data mining and 
resampling. International Journal of Psychological Research, 3(1), 9-22. 

 

12   International Journal of Psychological Research 

 

interpretation of data, rather than improving it. If 

transformations are done correctly, all data points should 

remain in the same relative order as prior to transformation 

and this does not affect researchers’ interpretations of 

scores. This might be problematic if the original variables 

were meant to be interpreted in a straight-forward fashion, 

such as annual income and age. After the transformations, 

the new variables might become much more complex to 

interpret. Even if transformation is needed, some data 

mining procedures, such as neural networks, perform this 

task in a hidden layer without the intervention of the 

analyst. 

 

Transparency and interpretability 

 

Data visualization aims to improve transparency of 

the analytical process. While hypothesis testers submit the 

data to complicated algorithms without understanding how 

the Wilk’s Lambda and the p-value are computed, data 

visualizers could directly “see” the pattern on the graph. 

Not only do data analysts like the transparency and 

interpretability that results from visualization, but most 

teachers and speakers also like to employ graphing 

techniques to present abstract results and complicated data 

structures in a concrete and appealing manner (Yu & 

Stockford, 2003). Interestingly enough, although variable 

selection is considered an objective of EDA by NIST 

Sematech (2006) and many other exploratory data analysts, 

traditional variable selection procedures, such as stepwise 

regression, are usually excluded from the arena of EDA for 

lacking visualization and transparency. However, it is 

important to note that the neural network, another new 

EDA technique based on data mining, is considered a 

“black box” because of a lack of transparency in the 

process (Fielding, 2007). Nevertheless, it is still a powerful 

tool for pattern recognition.  

 

Resampling and validation 

 

Confirmatory data analysis employs probabilistic 

inferences and thus the results yielded from CDA are said 

to posses a high degree of generalizability. In contrast, 

EDA focuses on pattern recognition using the data at hand. 

For this reason, EDA is said to aim at hypothesis generation 

as a complementary approach to CDA (Behrens & Yu, 

2003). Traditional EDA techniques might pass the initial 

findings (suggested factors or hypotheses) to CDA for 

further inquiry. However, with the use of resampling, new 

EDA can go beyond the initial sample to validate the 

finding. This feature will be further discussed in a later 

section. Moreover, in the past, comparing EDA and CDA 

results was just like comparing an apple and an orange. For 

example, EDA does not return a p-value at all. 

Nevertheless, today some new data mining-based EDA 

techniques allow the researcher to compare EDA results 

against those produced from conventional procedures (e.g. 

regression). How different solutions concur with each other 

could be viewed as a type of validation. 

 

A �EW EDA FRAMEWORK 

 

Goal-oriented, not means-oriented 

 

Nevertheless, certain conventional EDA elements 

are still indispensable. For example, in data mining many 

iterative processes still rely on residual analysis, and no 

doubt data visualization is essential to examining hidden 

patterns. But taking all of the above into account, it is 

obvious that some of the conventional elements of EDA are 

not fully applicable to the new development. It doesn’t 

necessarily imply that checking assumptions, spotting 

outliers, transforming data, and so on are obsolete; rather, 

they could still be useful in some situations. However, there 

are other EDA procedures for us to use to get around them. 

Hence, it is time to reconsider the appropriateness of the 

existing EDA framework. One of the problems of those 

conventional approaches is that the characteristics of EDA 

are tied to both the attributes of the data (distribution, 

variability, linearity, outliers, measurement scales …etc) 

and the final goals (detecting clusters, screening variables, 

and unearthing hidden patterns and complex relationships). 

In fact, dealing with the attributes of the data is just the 

means instead of the ends, and as demonstrated above, 

some data characteristics are no longer considered 

problematic to new EDA. However, if EDA is 

characterized by a goal-oriented approach, then detecting 

clusters, screening variables, and unearthing hidden 

relationships would still be applicable to all techniques no 

matter what advanced procedures are introduced in the 

future.  

In the following section each of the three goals of 

EDA stated above will be discussed. There are numerous 

new EDA techniques belonging to the preceding three 

categories. Due to space limitations, only one technique 

will be illustrated in each category. In addition, because 

variable selection and pattern recognition methods are 

guided by a response variable, they are considered 

“supervised learning methods.” On the other hand, 

clustering techniques have no dependent variable as a 

reference, and thus they are called “unsupervised learning 

methods.” “Learning” in this context means these 

approaches are data-driven i.e. the algorithms learn from 

the data. 

 

CATEGORIES A�D TECH�IQUES OF EDA 

 

Clustering: TwoStep cluster analysis 

 

Clustering is essentially grouping observations 

based upon their proximity to each other on multiple 

dimensions.  At first glance, clustering analysis is similar to 

discriminant analysis. But in the latter the analyst must 
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know the group membership for the classification in 

advance. Because discriminant analysis assigns cases to 

pre-existing groups, it is not as exploratory as cluster 

analysis, which aims to identify the grouping categories in 

the first place.  

 

If there are just two dimensions (variables), the 

analyst could simply use a scatterplot to look for the 

clumps. But when there are many variables, the task 

becomes more challenging and thus it necessitates 

algorithms. There are three major types of clustering 

algorithms: 1) Hierarchical clustering, 2) non-hierarchical 

clustering (k-mean clustering), and 3) TwoStep clustering. 

The last one is considered the most versatile because it has 

several desirable features that are absent in other clustering 

methods.  For example, both hierarchical clustering and k-

mean clustering could handle continuous variables only, but 

TwoStep clustering accepts both categorical and continuous 

variables. This is the case because in TwoStep clustering 

the distance measurement is based on the log-likelihood 

method (Chiu et al., 2001). In computing log-likelihood, the 

continuous variables are assumed to have a normal 

distribution and the categorical variables are assumed to 

have a multinomial distribution. Nevertheless, the 

algorithm is reasonably robust against the violation of these 

assumptions, and thus assumption checking is unnecessary. 

Second, while k-mean clustering requires a pre-specified 

number of clusters and therefore strong prior knowledge is 

required, TwoStep clustering is truly data-driven due to its 

capability of automatically returning the number of clusters. 

Last but not least, while hierarchical clustering is suitable to 

a small data set only, TwoStep clustering is so scalable that 

it could analyze thousands of observations efficiently. 

 

As the name implies, TwoStep clustering is 

composed of two steps. The first step is called 

preclustering. In this step, the procedure constructs a cluster 

features (CF) tree by scanning all cases one by one (Zhang 

et al., 1996). When a case is scanned, the pre-cluster 

algorithm applies the log likelihood distance measure to 

determine whether the case should be merged with other 

cases or form a new precluster on its own and wait for 

similar cases in further scanning. After all cases are 

exhausted, all preclusters are treated as entities and become 

the raw data for the next step. In this way, the task is 

manageable no matter how large the sample size is, because 

the size of the distance matrix is dependent on just a few 

preclusters rather than all cases. Also, the researcher has the 

option to turn on outlier handling. If this option is selected, 

entries that cannot fit into any preclusters are treated as 

outliers at the end of CF-tree building. Further, in this 

preclustering step, all continuous variables are 

automatically standardized. In other words, there is no need 

for the analyst to perform outliers detection and data 

transformation in separate steps. 

 

In step two, the hierarchical clustering algorithm is 

applied to the preclusters and then propose a set of 

solutions. To determine the best number of clusters, each 

solution is compared against each other based upon the 

Akaike Information Criterion (AIC) (Akaike, 1973) or the 

Bayesian Information Criterion (BIC) (Schwarz, 1978). 

AIC is a fitness index for trading off the complexity of a 

model against how well the model fits the data. To reach a 

balance between fitness and parsimony, AIC not only 

rewards goodness of fit, but also gives a penalty to over-

fitting and complexity. Hence, the best model is the one 

with the lowest AIC value. However, both Berk (2008) and 

Shmueli (2009) agreed that although AIC is a good measure 

of predictive accuracy, it can be over-optimistic in 

estimating fitness. In addition, because AIC aims to yield a 

predictive model, using AIC for model selection is 

inappropriate for a model of causal explanation. BIC was 

developed as a remedy to AIC. Like AIC, BIC also uses a 

penalty against complexity, but this penalty is much 

stronger than that of the AIC. In this sense, BIC is in 

alignment to Ockham’s razor:  Given all things being equal, 

the simplest model tends to be the best one. 

To illustrate TwoStep clustering, a data set listing 

400 of the world’s best colleges and universities compiled 

by US �ews and World Report (2009) was utilized. The 

criteria used by US �ews and World Report for selecting 

the best institutions include: Academic peer review score, 

employer review score, student to faculty score, 

international faculty score, international students score, and 

citations per faculty score. However, an educational 

researcher might not find the list helpful because the report 

ranks these institutions by the overall scores. It is tempting 

for the educational researcher to learn about how these best 

institutions relate to each other and what their common 

threads are. In addition to the preceding measures, 

geographical location could be taken into account.  

Because the data set contains both categorical and 

continuous variables, the researcher employed the TwoStep 

clustering analysis in Predictive Analytical Software 

(PASW) Statistics (SPSS Inc., 2009). It is important to note 

that the clustering result may be affected by the order of the 

cases in the file. In the original data set, the table has been 

sorted by the rank in an ascending order. In an effort to 

minimize the order effect, the cases were re-arranged in 

random order before the analysis was conducted. To run a 

TwoStep cluster analysis, the researcher must assign the 

categorical and continuous variables into the proper fields, 

as shown in Figure 1, using BIC instead of AIC for 

simplicity. 

 

In this analysis a three-cluster solution is 

suggested (see Figure 2). Cluster 1 is composed of all 

European institutions, whereas Cluster 2 includes colleges 

and universities in Australia, New Zealand, Asia, and 

Africa. Cluster 3 consists of North American and South 
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American institutions. Other characteristics of these clusters 

will be discussed next. 

 

Figure 1. Options in TwoStep cluster analysis 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Barchart of within cluster percentage 

 

 
 

PASW returns many tables and graphs for the 

analyst to examine the results. Due to space constraints, 

only a few will be discussed here. For example, in Cluster 3 

three variables are considered important to distinguishing 

Cluster 3 from the other two clusters. The three important 

variables are citations per faculty score, international 

students score, and international faculty score, because their 

t-statistics exceed the critical value (see Figure 3). 

 

The attributes of each cluster could be further 

examined using the centroids table (Table 1). Cluster 1 is 

characterized by high international students score, high 

international faculty score, and moderate citations per 

faculty score. On the other hand, Cluster 2 possesses the 

following characteristics:  moderate international students 

score, moderate international faculty score, and low 

citations per faculty score. In the last cluster, both 

international faculty score and international student score 

are the lowest, but its citations per faculty score is the best.  

 

Figure 3. Importance of variables for setting clusters apart 

 

 
 

The 95% confidence intervals of citations per 

faculty score clearly indicate that Cluster 3 substantively 

outperforms the two other clusters (see Figure 4). Actually, 

in Cluster 3 most institutions are located in the US, and this 

implies that although the best American universities are 

successful in research in terms of citations and recognition, 

they lack a strong international component comparing with 

their overseas counterparts. At the end, the researcher labels 

the three clusters as follows: 1) Cluster 1: International-

emphasis institutions; 2) Cluster 3: Research-emphasis 

institutions; and 3) Cluster 2: Balanced (between 

international-emphasis and research-emphasis) institutions. 

 

Table 1. Centroids table. 

 

Centroids 

 Cluster 

1 2 3 Combined 

Academic Peer 

Review Score 

Mean 54.13 58.86 64.40 58.53 

Std. Deviation 21.512 24.352 24.860 23.678 

Employer Review 

Score 

Mean 52.97 62.40 59.72 57.48 

Std. Deviation 26.972 23.897 26.545 26.338 

Student to Faculty 

Score 

Mean 55.24 51.90 52.94 53.67 

Std. Deviation 25.418 24.268 26.305 25.388 

International 

Faculty Score 

Mean 59.90 50.10 43.68 52.35 

Std. Deviation 26.841 31.734 21.432 27.538 

International 

Students Score 

Mean 62.66 46.22 43.85 52.61 

Std. Deviation 25.117 31.604 21.571 27.354 

Citations per 

Faculty Score 

Mean 51.81 43.54 67.21 54.48 

Std. Deviation 19.975 21.671 24.554 23.711 
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Figure 4. 95% confidence intervals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable selection: Recursive partition trees 

 

Classification trees, developed by Breiman et al. 

(1984), aim to find which independent variable(s) can 

successfully make a decisive split of the data by dividing 

the original group of data into pairs of subgroups in the 

dependent variable. Because classification trees can provide 

guidelines for decision-making, they are also known as 

decision trees. In addition, because at each decision point 

the data are partitioned and each partition is further 

partitioned independently of all other partitioned data until 

all possible splits are exhausted, they are also called 

recursive partition trees (Fielding, 2007).  

 

In programming terminology, a classification tree 

can be viewed as a set of “nested-if” logical statements. 

Breiman et al. used the following example for illustrating 

nested-if logic. When heart attack patients are admitted to a 

hospital, three pieces of information are most relevant to 

the survival of patients: What is the patient's minimum 

systolic blood pressure over the initial 24 hour period? 

What is his/her age? Does he/she display sinus tachycardia? 

The answers to these three questions can help the doctor to 

make a quick decision: “If the patient's minimum systolic 

blood pressure over the initial 24 hour period is greater than 

91, then if the patient's age is over 62.5 years, then if the 

patient displays sinus tachycardia, then and only then the 

patient is predicted not to survive for at least 30 days.” 

These nested-if decisions can be translated into a graphical 

form as a tree structure.  

 

As mentioned before, classification trees can 

accept the original data without transformation, regardless 

of the distribution and scaling. Specifically, the algorithm is 

invariant to monotonic transformation that retains the rank 

order of the observations. Thus, making a logarithmic 

transformation of data will lead to the same result. 

Additionally, classification trees are robust against outliers, 

because the data set is partitioned into many nodes during 

the exploratory process, and as a result, the effect of 

outliers is confined into their own nodes. In other words, 

those outliers have no effects on other nodes and the 

efficacy of the overall result (Fielding, 2007).  

 

Like many other data mining procedures, 

classification trees employed cross-validation, (Krus & 

Fuller, 1982), which is a form of resampling, to enhance its 

predictive power. Put simply, cross-validation divides the 

data set into training sets and testing sets.  Exploratory 

modeling using the training data set inevitably tends to 

overfit the data. But in the subsequent modeling using the 

testing data set, the overfitted model will be revised in order 

to enhance its generalizability. It is better to overfit the 

model and then scale back to the optimal point. If a model 

is built from a forward stepping approach and ended by a 

stopping rule, the researcher will miss the opportunities of 

seeing what might be possible and better ahead (Quinlan, 

1993).  

 

In the following discussion, the data set 

“Programme for International Student Assessment” (PISA) 

was utilized to illustrate classification trees. PISA is a series 

of assessments in science, mathematics, and reading. It is 

sponsored by the Organization for Economic Cooperation 

and Development (OECD, 2006), and administered 

internationally to 15-year-olds from different countries. In 

addition to test scores, PISA also administers many other 

instruments, such as the cognitive item test, the school 

questionnaire, the student demographic questionnaire, and 

the information and communication technology familiarity 

component for students questionnaire. In this example, 

using the US and Canadian observations (n=22,601), the 

researcher would like to find out which variables could best 

predict performance in the science test.  While the 

researcher was burdened with hundreds of variables listed 

in all preceding instruments, he turned to classification trees 

in Spotfire Miner (TIBCO, 2009). 

 

Using the logit yielded form an Item Response 

Theory (IRT) analysis, students were divided into high and 

low performers, with this grouping variable became the 

outcome variable. To run a classification tree, the 

researcher simply entered the dependent variable 

(performance in terms of logit) and all potential predictors. 

As mentioned before, outlier detection, data transformation, 

and assumption check are not needed. Classification trees 

have built-in cross-validation (resampling) mechanisms. 

But it is important to note that by default Spotfire sets the 

K-fold cross-validation K to “0.” It is advisable to change it 

to 2 or more. Kohavi (1995) suggested that 10-fold 

partitioning produced the best result, however, “10” is not 

the magic number. Thus, the researcher could try out 
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different settings. Also, It is tempting to use some stopping 

rule to prune the tree and “minimum complexity” might be 

attractive to researchers that favor a simple model (see 

Figure 5). But it is better to select “none” for pruning 

because as mentioned before, premature stopping disallows 

the researcher to see what is possible and better. 

 

Figure 5. K-fold cross-validation and pruning criterion. 

 

 

 

Figure 6. Optimal partition tree after pruning. 

 

 
 

After the job was submitted, Spotfire returned a 

suggested tree model, as shown in Figure 6, the orange 

portion of each rectangle depicts high performers while the 

blue portion signifies weaker performers. The classification 

tree identified science enjoyment, the number of books at 

home, frequent use of educational software, frequent use of 

computers for writing documents, science interest, and 

science value as the most important predictor to 

performance in the PISA science test. This model is 

considered optimal because when the tree grows by further 

partitioning, these variables keep recurring. In other words, 

increasing complexity does not yield additionally useful 

information, and thus the redundant components were 

manually pruned. 

 

A logistic regression model was run side by side 

with the preceding classification tree. Unlike its 

classification tree counterpart, the logistic regression model 

suggested a longer list of important predictors: Science 

enjoyment, the number of books at home, frequent use of 

educational software, frequent use of computers for writing 

documents, frequent use of computers for writing programs, 

frequent use of computers for downloading music, the 

number of TV sets, frequent use of spreadsheets, frequent 

use of computers for playing games, the number of 

computers at home, frequent use of graphics programs, 

frequent use of computers for online communication, 

frequent use of computers for collaborating on the Internet. 

However, when there are too many predictors, the 

reliability of the parameter estimates decrease (Fielding, 

2007). The predictive power of the two approaches was 

evaluated by both classification agreement and ROC 

curves. Table 2 indicates that the classification tree 

outperforms the logistic regression model in predicting both 

high (1) and weaker performers (0).  

 

Table 2. Classification agreement between the predicted 

and observed for all students. 

 

 Predicted and 
observe matched 

(1) 

Predicted and 
observe matched 

(0) 

Overall 

Classification tree 84.1% 40.4% 67.00% 

Logistic regression 83.9% 39.0% 65.9% 

 

 

This assessment is bolstered by the overlaid ROC 

curves, which illustrate sensitivity (true positive rate) and 1 

– specificity (false positive rate). The ideal prediction 

outcomes are 100% sensitivity (all true positives are found) 

and 100% specificity (no false positives are found). In 

Figure 7, the 45 degree diagonal gray line represents the 

baseline. When there is no modeling, the probability is .5. 

Thus, a good classifier should depict a ROC curve leaning 

towards the upper left of the graph. Figure 6 shows that 

overall the classification tree, shown by a blue line, is 

superior to the logistic regression, presented by a red line. 

Specifically, while attempting to achieve the highest true 

positive rate, the logistic regression modeling is more 

liberal than its decision tree counterpart. In other words, it 

makes positive classification with weak evidence and tends 

to get positive cases correct at the expense of a high false 

positive rate. For example, when the true positive rate of 

the logistic regression is .7, its false positive rate is as high 

as .55. But when decision tree reaches the same true 

positive rate, its false positive rate is just .425. It is true that 

in the lower left of the chart (lower true positive rate < .5) 

the logistic regression is more conservative than the 

classification tree, but in that area the difference between 

the two models in terms of the false positive rate is narrow. 

In summary, no matter whether simplicity, classification 

agreement or ROC curves was used as the criterion for 

determining the model choice, it is obvious that the 

classification tree approach is more advantageous than 

logistic regression. 
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Figure 7. ROC comparing classification tree and logistic 

regression. 

 

 
 

 

Pattern recognition: �eural networks 

 

While classification trees aim to identify 

predictors, neural networks can be used for both selecting 

variable and examining complex relationships (Gonzalez & 

DesJardins, 2002). Neural networks, as the name implies, 

try to mimic interconnected neurons in animal brains in 

order to make the algorithm capable of complex learning 

for extracting patterns and detecting trends (Kuan, 1994; 

McMenamin, 1997).  Because this approach artificially 

mimics human neurons in computers, it is also named 

artificial neural networks. It is built upon the premise that 

real world data structures are complex and nonlinear, and 

thus it necessitates complex learning systems. Unlike 

regression modeling that assumes linearity, neural networks 

could model linearity and thus they typically outperformed 

regression (Somers & Casal, 2009). 

 

A trained neural network can be viewed as an 

“expert” in the category of information it has been given to 

analyze. This expert system can provide projections given 

new solutions to a problem and answer "what if" questions. 

A typical neural network is composed of three types of 

layers, namely, the input layer, hidden layer, and output 

layer (see Figure 8). It is important to note that there are 

three types of layers, not three layers, in the network. There 

may be more than one hidden layer and it depends on how 

complex the researcher wants the model to be. The input 

layer contains the input data; the output layer is the result 

whereas the hidden layer performs data transformation and 

manipulation. 

 

 

 

Figure 8. Three layers of a typical neural network 

 

 

As mentioned in the third section, preliminary data 

transformation is unnecessary in many data mining 

techniques, including neural networks. In traditional linear 

regression the researcher might try different transformation 

of the predictors, interactions between predictors, or both 

(e.g. using centered scores for interaction terms). But in 

neural networks these are automatically processed in the 

hidden layer. In this sense, linear regression and logistic 

regression can be viewed as special cases of neural 

networks that omit the hidden layer (Shmueli, Patel, & 

Bruce, 2007; Yu, 2009c). Because the input and the output 

are mediated by the hidden layer that is not transparent to 

the analyst, neural networks are commonly seen as a “black 

box.” 

 

The network is completely connected in the sense 

that each node in the layer is connected to each node in the 

next layer. Each connection has a weight at the initial stage 

and these weights are just randomly assigned. A common 

technique in neural networks to fit a model is called back 

propagation. During the process of back propagation, the 

residuals between the predicated and the actual errors in the 

initial model are fed back to the network. In this sense, back 

propagation is in a similar vein to residual analysis in 

conventional EDA (Behrens & Yu, 2003). Since the 

network performs problem-solving through learning by 

examples, its operation can be unpredictable. Thus, this 

iterative loop continues one layer at a time until the errors 

are minimized. Neural networks use multiple paths for 

model construction. Each path-searching process is called a 

“tour” and the desired result is that only one best model 

emerges out of many tours. Like other data mining 

techniques, neural networks also incorporate cross-

validation to avoid capitalization on chance alone in one 

single sample. 

 

In the following illustration, the example data set 

was compiled by tracking the continuous enrollment or 

withdrawal of 6690 sophomore students enrolled at a US 

university starting in 2003. The dependent variable is a 

dichotomous variable, retention. In this study, retention is 

defined as persisting enrollment within the given time 

frame (2003-2004 academic years, excluding summer). 

There are three sets of potential predictors: 1) 

Demographic: This set of predictors includes gender, 

ethnic, residence (in state/out of state), and location (living 

on campus/off campus).  2) Pre-college or external 
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academic performance indicators: This set of variables 

includes high school GPA, high school class rank, SAT 

scores, ACT scores, transferred hours, and university 

mathematics placement test scores. 3) Online class hours as 

a percentage of total hours during the sophomore year. Like 

the PISA data set, this data set contains so many variables 

that using CDA might be difficult. Hence, the researcher 

turned to neural networks for exploring the inter-

relationships among these variables. 

 

Figure 9. Dialog box of neural networks in JMP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this analysis, neural networks in JMP (SAS 

Institute, 2009) were utilized. The very essence of EDA is 

the freedom of exploration; there is no single best approach. 

Thus, the researcher could freely enter the numbers of 

hidden nodes, tours, maximum iterations, and folds of 

cross-validation, as shown in the following dialog box 

(Figure 9). After several trials with different settings, the 

researcher could select the most interpretable one out of a 

set of suggested results. 

 

Taking clarity of interpretation as the major 

criterion, the results of the neural net using three hidden 

layers, three tours, and 5-fold cross-validation are retained 

for the following discussion. A neural network allows the 

analyst to examine all possible interactions (see Figure 10). 

On the right panel of the graph, each rectangle contains the 

value range of the variable from the lowest to the highest. 

Inside each rectangle there is a slider for manipulation. 

When the value of the variable changes, there is a 

corresponding change in the graph. The analyst can use the 

slider to superimpose a value grid on the graph and at the 

same time the rightmost cell shows the exact value of the 

variable of interest. It is crucial to emphasize that these are 

not regular 3-D plots that are commonly found in most 

EDA packages, in which frequencies or raw values are 

usually plotted. Rather, the probabilities on the Z-axis result 

from adaptive learning through iterative loops. 

 

The neural net indicates that the interaction effect 

between these students is complicated and non-linear. The 

Y-axis (vertical) of Figure 10 represents the predicted 

probability of retention, the X-axis denotes the number of 

transferred hours, and the Z-axis depicts ethnic groups 

coded as: White = 1, Asian = 2, Hispanic = 3, Black = 4, 

and Native American = 5. For White and Hispanic students, 

as the number of transferred hours increases, the probability 

of retention slightly increases, which is indicated by the 

gradual slope on the outmost right. For Asian students, an 

increase in the number of transferred hours does not affect 

retention rate at all. However, for Black and Native 

American students, when the amount of transferred hours is 

low, the probability of continuing enrollment is still high. 

But there is a sharp drop in probability of retention for 

Native Americans when the number of transferred credits is 

between 19 and 31. For Black students, the sudden 

depression of probability happens between 18 and 38 

transferred hours. Afterwards, the probability rises along 

with the transferred hours. 

 

The interaction between residency and transferred 

hours is another noteworthy phenomenon. While the 

probability of retention for non-residents slightly increases 

as the number of transferred hours increases, the probability 

for retention climbs up sharply after 42 transferred hours 

(see Figure 11). It is important to note that 42 is by no 

means the “magic” cutoff. This may vary from sample to 

sample, and even from population to population. The main 

point is that there exists an interaction effect between 

transferred hours and residency. 

 

EDA A�D RESAMPLI�G 

 

At first glance, exploratory data mining is very 

similar to conventional EDA except that the former 

employs certain advanced algorithms for automation. 

Actually, the differences between conventional EDA and 

exploratory data mining could be found at the 

epistemological level. As mentioned before, EDA suggests 

variables, constructs and hypotheses that are worth 

pursuing and CDA takes the next step to confirm the 

findings. However, using resampling (Yu, 2003, 2007), 

data mining is capable of suggesting and validating a model 

at the same time. One may argue that data mining should be 

classified as a form of CDA when validation has taken 

place. It is important to point out that usually exploratory 

data mining aims to yield predication rather than theoretical 

explanations of the relationships between variables 

(Shmueli & Koppius, 2008; Yu, in press). Hence, the 

researcher still has to construct a theoretical model in the 

context of CDA (e.g. structural equation modeling) if 

explanation is the research objective. 
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Figure 10. Interaction between ethnic groups and transferred hours. 

 

 

Figure 11. Interaction between residency and transferred 

hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resampling in the context of exploratory data 

mining addresses two important issues, namely, 

generalization across samples and under-determination of 

theory by evidence (Kieseppa, 2001). It is very common 

that in one sample a set of best predictors was yielded from 

regression analysis, but in another sample a different set of 

best predictors was found (Thompson, 1995). In other 

words, this kind of model can provide a post hoc model for 

an existing sample (in-sample forecasting), but cannot be 

useful in out-of-sample forecasting. This occurs when a 

specific model is overfitted to a specific data set and thus it 

weakens generalizability of the conclusion. Further, even if  

 

 

a researcher found the so-called best fit model, there may 

be numerous possible models to fit the same data. 

 

To counteract the preceding problems, most data 

mining procedures employed cross-validation to enhance 

generalizability. For example, to remediate the problem of 

under-determination of theory by data, neural networks 

exhaust different models by the genetic algorithm, which 

begins by randomly generating pools of equations. These 

initial randomly generated equations are estimated to the 

training data set and prediction accuracy of the outcome 

measure is assessed using the test set to identify a family of 

the fittest models. Next, these equations are hybridized or 

randomly recombined to create the next generation of 

equations. Parameters from the surviving population of 

equations may be combined or excluded to form new 

equations as if they were genetic traits inherited from their 

“parents.” This process continues until no further 

improvement in predicting the outcome measure of the test 

set can be achieved (Baker & Richards, 1999). In addition 

to cross-validation, bootstrapping, another resampling 

technique, is also widely employed in data mining (Salford 

Systems, 2009), but it is beyond the scope of this article to 

introduce bootstrapping. Interested readers are encouraged 

to consult Yu (2003, 2007). 

 

CO�CLUDI�G REMARKS 

 

This article introduces several new EDA tools, 

including TwoStep clustering, recursive classification trees, 

and neural networks, in the context of data mining and 

resampling, but these are just a fraction of the plethora of 
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exploratory data mining tools. In each category of EDA 

there are different methods to accomplish the same goal, 

and each method has numerous options (e.g. the number of 

k-fold cross-validation). In evaluating the efficacy of 

classification trees and other classifers, Wolpert and 

Macready (1997) found that there is no single best method 

and they termed this phenomenon “no free lunch” – every 

output comes with a price (drawback). For instance, 

simplicity is obtained at the expense of fitness, and vice 

versa. As illustrated before, sometimes simplicity could be 

an epistemologically sound criterion for selecting the “best” 

solution. In the example of PISA data, the classification tree 

model is preferable to the logistic regression model because 

of predictive accuracy. And also in the example of world’s 

best universities, BIC, which tends to introduce heavy 

penalties to complexity, is more favorable than AIC. But in 

the example of the retention study, when the researcher 

suspected that there are entangled relationships among 

variables, a complex, nonlinear neural net was constructed 

even though this black box lacks transparency. In one way 

or the other the data explorer must pay a price. Ultimately, 

whether a simple and complex approach should be adopted 

is tied to usefulness. Altman and Royston (2000) asserted 

that “usefulness is determined by how well a model works 

in practice, not by how many zeros there are in associated p 

values” (p.454). While this statement pinpoints the blind 

faith to p values in using inferential statistics, it is also 

applicable to EDA. A data explorer should not hop around 

solutions and refuse to commit himself/herself to a 

conclusion in the name of exploration; rather, he/she should 

contemplate about which solution could yield more 

implications for the research community. 

Last but not least, exploratory data mining 

techniques could be simultaneously or sequentially 

employed. For example, because both neural networks and 

classification trees are capable of selecting important 

predictors, they could be run side by side and evaluated by 

classification agreement and ROC curves. On other 

occasions, a sequential approach might be more 

appropriate. For instance, if the researcher suspects that the 

observations are too heterogeneous to form a single 

population, clustering could be conducted to divide the 

sample into sub-samples. Next, variable selection 

procedures could be run to narrow down the predictor list 

for each sub-sample. Last, the researcher could focus on the 

inter-relationships among just a few variables using pattern 

recognition methods. The combinations and possibilities are 

virtually limitless. Data detectives are encouraged to 

explore the data with skepticism and openness. 
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