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Parametric tests are frequently applied by
researchers, but some researchers may neither
understand the theoretical framework behind
parametric tests, nor hold beliefs that are consistent
with that framework. The parametric test framework
is defined by the relationships among sample,
sampling distributions, and population. This article
points out several omissions in statistics textbooks
and common misconceptions concerning these
relationships. It is proposed that these relationships
should be taught in a coherent fashion. To provide
support for this claim, we (a) reviewed 55 statistics
textbooks for various majors such as social sciences
and engineering, and (b) administered an online
survey specific to the concepts of parametric tests to
34 graduate students who have taken 4.9
undergraduate and graduate statistics courses.

Parametric test framework

The absence of foundational concepts causes
subsequent misconceptions in the interpretation and
application of parametric tests. Sixty-two percent of
the respondents to our survey did not know what a
parametric test was, let alone the assumptions of
parametric tests and the criteria of choosing among
parametric tests, non-parametric tests, and other data
analytical strategies. This lack of awareness of
foundational concepts may be traced back to statistics
texts. In our textbook review, it was found that only
20 percent of these books explained the term

Figure 1. Parametric test framework
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“parametric tests.” Only one book illustrated a road
map of choosing between parametric and non-
parametric tests (Sharp, 1979). To address this
problem, the following illustration is presented.

Figure 1 illustrates the basic components of the
parametric test framework. This framework consists
of a theoretical and an empirical world. Although
statistical testing appears to be empirical, the
foundation is indeed non-empirical. On the
theoretical side, there is an infinite population and a
sampling distribution, which are the target and the
foundation of probabilistic inference, respectively.
Probabilistic inference, which leads to a codification
of uncertainty by confidence intervals and hypothesis
testing, is considered the classical paradigm for
parametric tests.  This inference rests on the
foundation of sampling distributions and the central
limit theorem (CLT). In order to generate data for the
inference, power analysis and a sampling method are
needed on the empirical side. Each component of the
framework will be explained in detail.

A parametric test uses the sample statistic to
estimate the population parameter.  An initial
misconception arises from the meaning of
“parameter.” According to Webster’s New Word
Dictionary (Simon and Schuster, 1991), the term
“parameter” denotes a constant with variable values.
Another example can be found in computer
programming: when a function passes a parameter to
another function, the parameter carries an exact
value. However, this is not always the case in
statistics.
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Hypothetical and theoretical world
Hypothetical population

Infinite size. Generally speaking, in parametric
tests a parameter is introduced as a fixed number that
describes the population, but a parameter is viewed
by Bayesians as a random variable (Schield, 1997).
Indeed, the first statement is correct if the population
refers to the accessible population.  However,
parametric tests start with a hypothetical, infinite
population and thus a parameter is hardly a fixed
constant. For instance, let us assume that we can
measure the height of every American male aged 18
or over. We draw the conclusion that the mean height
of these men is 1.51 meters. This mean height is not
a fixed constant. Its value will change a second later,
since every second thousands of American men die
and thousands reach their 18" birthday.

Even if the population size is finite, the
population parameter is still not a fixed constant
because there are distributions both between people
and within people. Since people are different, this
between-subject variability forms a distribution.
However, the same person also has different task
performance levels and attitudes toward an issue at
different times. This variability within the same
person could also form a distribution. Following this
framework, even if the population has a fixed number
of members, it could still yield a changing parameter.

Frick (1998) used an example of “the planet of
Forty” to illustrate the application of inferences to a
finite population. This example could be stretched to
illustrate the concept of distribution within. Imagine
that in the planet of Forty, there are only 40 residents
who can live forever but cannot reproduce offspring.
Imagine that their memory can be erased so that a
treatment effect will not carry over to the next one.
When they are split into two groups and are exposed
to two different treatments, are the two mean scores
considered fixed parameters? The answer is “no.” A
month later when the researcher wipes out what they
have learned and asks them to start the experiment
over, the scores will vary. This is one of the reasons
why statistical tests are still useful even if the
researcher has full knowledge of the population.
Since there is variability within and between subjects,
the researcher needs to know whether the difference
is due to chance fluctuations regardless of whether
the source of fluctuation is between or within.

A real life example can be found at the debate on
university faculty salary equity studies. Haignere,
Lin, Eisenberg, and McCarthy (1996) suggested that
use of statistical significance is improper while the
complete population of faculty members is studied.
To counter this argument, Dizinno (1999) stated that
the current faculty are only a sample that reflects
ongoing, and possible future, salary-setting policies,

and thus they are a sample of the population, not the
complete population.

Glass and Hopkins (1996) stated that the
population is not actually infinite is of little concern,
because unless the ratio between the sample and the
population is .05 or greater, the techniques for
making inferences to finite populations and those for
infinite populations give essentially the same results.
Procedurally speaking, the notion that “populations
are infinite” is unimportant. Conceptually speaking,
the misperception of population as finite and
population parameter as a fixed constant has negative
consequences, as it leads researchers to seek out an
objective, true and final answer that does not exist.

Unfortunately, the difference between infinite
and finite populations is not emphasized in most
statistics textbooks. Out of fifty-five reviewed books,
only sixteen of them (29%) explained the difference.

Unknown distribution. Not only is this
hypothetical population infinite in size and
fluctuating within, it is also unknown in distribution.
Contrary to popular belief, the population distribution
is not necessarily normal. This leads to another
problem. It is a common belief that a random sample
represents the target population and thus random
sampling is required for a parametric test. However,
when the population is infinite, fluctuating, and
unknown, there is no way of knowing whether the
sample reflects the population even if the sample is
random. (Frick, 1998). A noted physicist Jaynes
(1995) identified the perceived equivalence between
the random sample and the unknown population as
the “mind projection fallacy.”

Regardless of the uncertainty of the population,
one must start with an accessible population from
which random samples are drawn. Problems arise
when one regards the known and accessible
population as the target population, to which the
inference is ultimately made. For example, if a
researcher defines the population as all current
college students at a university and an inference
regarding the effectiveness of web-based instruction
is made to this population, does the inference also
apply to future students? If the inference is localized
to a particular time and space, then the findings of the
experiment cannot be used to construct a theory,
since theory by definition is predictive in nature
(Kerlinger, 1986).

Summary. In summary, accepting the notion of a
finite population will lead to four troublesome
consequences: (a) when the entire population is
accessible, it is believed that there will be no need to
conduct statistics tests, (b) the population parameter
will be regarded as a fixed constant and the mission
of statistics will be seen as the search for one true
answer, (c) a random sample will be believed to be




representative of a population (the “mind projection
fallacy”), and (d) the generalizability of the inference
will be limited to the accessible population and the
construction of a universal theory will be crippled.

Survey results. The survey results confirm our
suspicion that the preceding concepts are widely
misunderstood. Sixty-one percent of respondents
realized that a hypothetical population is infinite in
size, but only twenty-three percent were aware that
the distribution is unknown. Only thirty-eight percent
correctly believe that even when a researcher has full
access to the entire population, there is still a need to
perform a statistical test.

Theoretical sampling distributions

Central limit theorem. Obtaining a true random
sample from an infinite, fluctuating, and unknown
population is not possible. Under the CLT, limited
cases are used to construct a sampling distribution to
approximate the center of the population. This
theoretical sampling distribution serves as a bridge
between an empirical sample and a hypothetical
population. The theorem itself is used to justify
making inferences from the sample to the population.

Statistical tests are said to be positivist in nature
(Suen, 1992). However, sampling distributions exist
in theory only. If some things exist in theory, do they
really exist? In theory, a normal distribution is based
on infinite cases. One can use a supercomputer to
simulate a normal distribution, but of course the
simulation cannot run forever. The debate regarding
the existence of mathematical reality has a long
history and remains inconclusive (Penrose, 1989; Yu,
1998). While mathematics is theoretical in essence
and thus sampling distributions seem natural to a
mathematician, sampling distributions may not
correspond to the practical reality which confronts the
practitioners (Good, 1994).

Nonetheless, the founder of statistical testing,
Fisher (1956) did not view distributions as outcomes
of empirical replications that might actually be
conducted. He asserted that theoretical sampling
distributions, against which observed effects are
tested, have no objective reality "being exclusively
products of the statistician's imagination through the
hypothesis, which he has decided to test.” (p.81).

Non-normal population. The requirement of data
normality in parametric tests is grounded in the CLT.
However, some researchers mistakenly believe that
non-normal data are undesirable for parametric tests,
because the data do not resemble a normal population
to which observed data are compared (e.g. Siala,
1999). Burrill (1999) pointed out two problems about
the preceding notion: (a) not every statistical test
requires normally-distributed variables, and (b) no
statistical tests require the scores to be compared to a
normal population. One can see how one

misconception could lead to another, and eventually
the entire conceptual model could fall apart.

Questionable statements concerning the CLT and
normal distribution could be found in statistics texts.
For example, a statistical guide for medical
researchers stated, ‘“sample values should be
compatible with the population (which they
represent) having a normal distribution.” (Airman &
Bland, 1995, p.298). In fact, the CLT does not
assume the normality of the population distribution.
The theorem states that a sampling distribution
becomes closer to normality as the sample size
increases, regardless of the shape of population
distribution. Because the shape of the population
distribution is unknown and could be non-normal, in
parametric tests data normality resembles the
sampling distribution, not the population. In other
words, a test statistic from the sample will be
compared against the sampling distribution rather
than against the population.

Normality is a myth. The belief that most
populations are normal is hardly an empirical fact.
Physicist Lippmann pointed out the circular logic of
proving normality: “Everybody believes in the
normal approximation, the experimenters because
they think it is a mathematical theorem, the
mathematicians because they think it is an
experimental fact.” (cited in Thompson, 1959, p.121).
In a similar vein to Lippmann, Stigler (1986)
criticized the “circular” logic employed by Gauss,
who developed the normal distribution. Gauss
conceptualized the mean in terms of “least squares”:
the mean could be used to summarize a data set,
because when more observations are closer to the
mean and less observations are farther from the mean,
the sum of squares of the deviation is minimal. The
mean is only “most probable” if the errors
(deviations) are normally distributed; and the
supposition that errors are normally distributed leads
back to least squares. In response to the lack of proof
of universal normal distributions, Geary (1947) stated
that normality could be viewed as a special case of
many distributions rather than a universal property.
However, since the school of Fisher became
dominant, universal normality has been favored and
interest in non-normality has retreated to the
background. Geary suggested that future textbooks
should include this warning: “Normality is a myth;
there never was, and never will be, a normal
distribution.” (p.241). However, none of the reviewed
texts carry this warning.

Mathematical _efficiency. The belief that
observed data are compared to a normal distribution
is a serious misunderstanding of the role of normal
distribution in  hypothesis  testing.  Normal
distributions are used because a statistical test




procedure should be “efficient” and “optimal,” in the
sense of a high probability of detecting the falseness
of a hypothesis when it is indeed false (Kariya &
Sinha, 1989). This probability is known as statistical
power, which will be discussed in the next section.
An optimal test can maximize its power when the
normal distribution is assumed as the underlying
distribution. In addition, when normality is satisfied,
only the first- and second- order moments (mean and
variance) are needed to fully describe the distribution
of the variables. The third- and fourth-order moments
(skewness and kurtosis) are not necessary (West,
Finch, & Curran, 1995). Thus, the requirement of
normality is not due to an empirical fact, rather it is
driven by mathematical efficiency.

Summary. The lack of the knowledge of
sampling distributions and the CLT will result in
three problems: (a) sampling distributions serve as a
foundation for making the leap from sample to
population. Without this knowledge, inferences are
believed to be made to the sample or there is no
justification for the leap from the empirical world to
the hypothetical world, (b) statistical testing is
believed to be positivist and empirical. Actually, the
foundation of statistical testing, which is sampling
distribution, is theoretical and cannot be verified
empirically, and (c) the sample normality requirement
is not driven by empirical facts, but mathematical
efficiency. However, normally distributed data are
expected to show that the shape of the sample
distribution can match that of the population. In fact,
the population distribution is unknown and only the
sampling distribution is normal.

Survey results. The survey results are not
surprising. Forty-one percent of respondents failed to
identify the population as the target of inferences.
Fifty-six percent mistakenly believed that the
hypothetical population must be normal.

Empirical world
Power analysis

Fusion of null and alternate hypotheses.
Sampling distributions provide the basis for power
analysis. Power analysis, which is based upon the null
sampling distributions and the alternate sampling
distributions, is applied to determine the proper
sample size for a research project, and thereby
determines the efficiency of the test. Sampling
methods are used to draw subjects from an accessible
population. Hence, a finite sample is obtained and
empirical data are computed.

However, in Fisherian statistical testing, the null
hypothesis is zero effect. The only conclusion after
achieving statistical significance is that “the effect is
not nil.” Following this strict Fisherian tradition,
researchers would find no room for power analysis
since statistical power depends on the unknown

alternate distribution (Lehmann, 1993). To rectify this
shortcoming, an effect size, which is the standardized
distance between the null and the alternate, must be
pre-determined. By sketching a distance from the
null, the position of the hypothetical alternate is
“pinned down.”

Summary. Failure to recognize that power
analysis is based on the alternate sampling
distribution introduces two problems: (a) power
analysis is perceived as an empirical-based procedure
on the population and the sample, and (b) It is
disconcerting that one looks for a clear-cut answer
(reject/not  reject the null hypothesis) while
conducting a power analysis based on the alternate
hypothesis, which is unknown in nature and is only
hypothesized by an estimated effect size.

Survey results. The survey results indicate that
only thirty-two percent of participants correctly
associated  power analysis  with  sampling
distributions.

Sampling methods

Randomness as independence. As previously
mentioned, it is impossible to obtain a true random
sample from an infinite and unknown population and
then empirically verify whether the sample could
represent the population. Thus, random sampling
emphasizes the properties of the sample derived from
the sampling process. i.e. One draws a series of
values of independent and identically distributed
random variables to form a random sample. The
keyword of the preceding statement s
“independence.”

Many authors define random sampling as a
sampling process in which each element within a set
has equal chances to be drawn (e.g. Moore &
McCabe, 1993; Aczel, 1995). Equality is associated
with fairness. This definition contributes to the myth
that if the occurrence of a particular event is very
frequent, the outcome is considered “unfair” and thus
the sample may not be random. This belief also
implies that a random sample should reflect the
population when every type of member in the
population is “fairly” represented.

In reality, complete fairness does not exist. One
should not expect that in an urn of balls, small balls
have equal probabilities to be sampled as large balls.
Even if we put the same size balls in the urn, we
cannot "equalize" all factors relevant to the outcome.
Jaynes (1995) fully explained this problem: “The
probability of drawing any particular ball now
depends on details such as the exact size and shape of
the urn, the size of balls, the exact way in which the
first one was tossed back in, the elastic properties of
balls and urn, the coefficients of friction between
balls and between ball and urn, the exact way you
reach in to draw the second ball, etc..




(Randomization) is deliberating throwing away
relevant information when it becomes too
complicated for us to handle...For some, declaring a
problem to be ‘'randomized' is an incantation with the
same purpose and effect as those uttered by an
exorcist to drive out evil spirits.” (pp. 319-320)

Phenomena appear to occur according to equal
chances, but indeed in those incidents there are many
hidden biases and thus observers assume that chance
alone would decide. Since authentic equality of
opportunities and fairness of outcomes are not
properties of randomness, a proper definition of
random sampling should be a sampling process in
which each member within a set has independent
chances to be drawn. In other words, the probability
of one being sampled is not related to that of others.
Hassad (1999) made a very precise statement about
the role of probability in sampling, “The probability
in sampling takes care of selection bias only. It does
not address representativeness.”

At the early stage of the development of the
concept “randomness,” the essence of randomness
was tied to independence rather than fair
representation. When Fisher and his coworkers
introduced randomization into experiments, their
motive was not trying to obtain a representative
sample. Instead they contended that the value of an
experiment depended upon the valid estimation of
error (Cowles, 1989). In other words, the errors must
be independent rather than systematic.

Summary. The misconception of random
sampling as achieving “fairness” and “representation”
is tied to this problem: The target population is finite
and known, and therefore one can tell how
representative a random sample is. The consequence
of misunderstanding random sampling will result in a
false sense of security: The sample can represent the
population and thus the inference is valid.

Survey results. Although the population, to
which the inference is made is hypothetical and
unknown, the majority of the participants (32%)
believed that a random sample could be more
representative of the population, depending on the
ratio between the sample size and the population size.

Inferences from empirical to theoretical world
Probabilistic inferences

As mentioned before, under the framework of
parametric tests, the inference should be made to the
population from the sample. In statistical testing, a
test statistic is extracted out of a finite sample and
used to compare against an infinite sampling
distribution. The probability (p-value) indicates how
likely the result will surface in the long run. In other
words, the interpretation of statistical testing should
be a probabilistic inference rather than the pursuit of
one true answer. Niels Bohr’s “Copenhagen

intepretation” is well applied to statistical inference
though he was in a different discipline. Bohr asserted
that one can answer questions of the form: “If the
experiment is performed, what are the possible results
and their probabilities?” One should not answer any
question in this form: “What is really happening
when ...?” (cited in Jaynes, 1995, p.1012).

The impression that a statistical inference leads
to one true answer is due to the subsequent action
after the rejection or retention of the null hypothesis.
When an experiment indicates that there is a
significant difference between the mean scores of the
control and treatment groups, the policy maker adopts
the treatment although there is no logical connection
between the action and the inference. As Schield
(1997) said, “Probability itself does not lead to action,
rather probability justifies confidence and confidence
justifies action” (p.3).

As a matter of fact, it is impossible that every
study on the same topic can produce the same result.
If there is only one true answer, which one is true?
On the other hand, the probabilistic nature of
inference is compatible with the philosophy of
science that research results are tentative and thereby
inquiry is a self-correcting process in the long run
(Peirce, 1900/1960). Under this premise, inconsistent
results from different research studies do not create
any logical dilemma.

Summary

The failure of conceptualizing a statistical
inference as a probabilistic inference is tied to other
misconceptions in sample, sampling distributions,
power, and population. In addition, this failure not
only leads researchers to have a false sense of
certainty, but also leaves no room for harmonizing
inconsistent research results.

Survey results

According to the survey, misconceptions specific
to inferences seem to be less serious. Only twenty-
nine percent of participants misunderstood the
meaning of the p-value, and misperceived that the
nature of quantitative research, to some degrees, is
truth-seeking by giving a definite answer.

Conclusion

The concept of the relationship among sample,
population, and sampling distribution is the
foundation of subsequent statistical concepts and
procedures. Misconceptions in different components
of the framework are inter-related. Without a
coherent theoretical framework, one may be able to
perform statistical procedures correctly, but fail to
interpret the result and conceptualize the nature of the
inference properly. The following detrimental beliefs
are some examples resulting from such an incoherent
framework: “The population is finite and inferences
are generalized to this population.” “The data



distribution are not normal and thus they cannot
represent the population. ”...etc. All  these
misconceptions could be boiled down to a common
thread: the failure to identify the difference between
the theoretical world and the empirical world, and
how the researcher could leap back and forth from
one to the other. Teaching concepts in a piecemeal
manner tends to increase the risk of forming an
incoherent  framework.  Teaching  statistical
procedures without introducing a unified framework

is even worse. It is recommended that a

comprehensive and coherent parametric  test

framework should be learned by statistics students
with each component thoroughly explained to ensure

a smooth logical flow from one to the other.
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